精英家教网 > 高中数学 > 题目详情
3.设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求实数m的取值范围.

分析 (1)把m=4代入B中方程求出解,确定出B,求出A中方程的解确定出A,找出两集合的并集即可;
(2)由B为A的子集,分B为空集与B不为空集两种情况求出m的范围即可.

解答 解:(1)由A中方程解得:x=4,即A={4};
将m=4代入B中的方程得:x2-10x+16=0,即(x-2)(x-8)=0,
解得:x=2或x=8,即B={2,8},
则A∪B={2,4,8};
(2)∵A∪B=A,∴B⊆A或B=A,
∴当B=∅时,则有△=4(m+1)2-4m2<0,即m<-$\frac{1}{2}$;
当B=A时,则△=4(m+1)2-4m2=0,且-$\frac{-2(m+1)}{2}$=4
解得:m不存在;        
故m<-$\frac{1}{2}$.

点评 此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2=c2+ab,c=1.
(1)求角C的大小;
(2)求$\frac{1}{2}$b+a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆的方程为x2+y2=1,则圆心到直线x+y+2=0的距离为(  )
A.1B.2C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立,如果实数a,b满足不等式组$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f({b}^{2}-8b-2)≤0}\\{f(b+1)>f(5)}\end{array}\right.$,那么a2+b2的取值范围是(  )
A.[9,49]B.(17,49]C.[9,41]D.(17,41]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等比数列{an}的前n项和为Sn,若a1=1,$\frac{{{S_{10}}}}{S_5}=\frac{33}{32}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{3n-1}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等比数列{an}中,a1•a2•…•a5=32,则a3=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.二进制数11111转换成十进制数是31 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若y=f(x)是定义在[1,8]上的单调递减函数,且f(2t)-f(t+2)<0,求t的取值范围.

查看答案和解析>>

同步练习册答案