精英家教网 > 高中数学 > 题目详情
8.等比数列{an}的前n项和为Sn,若a1=1,$\frac{{{S_{10}}}}{S_5}=\frac{33}{32}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{3n-1}{a_n}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)利用等比数列的和,通过已知条件求出公比,然后求{an}的通项公式;
(Ⅱ)化简数列bn的通项公式,利用错位相减法求解数列的和即可.

解答 解:(Ⅰ)设{an}公比为q,因为$\frac{{{S_{10}}}}{S_5}=\frac{33}{32}≠2$,所以q≠1.…(2分)
所以$\frac{{{S_{10}}}}{S_5}=\frac{{\frac{{{a_1}(1-{q^{10}})}}{1-q}}}{{\frac{{{a_1}(1-{q^5})}}{1-q}}}=1+{q^5}$,所以$1+{q^5}=\frac{33}{32}$,$q=\frac{1}{2}$.
因此{an}的通项公式是${a_n}={(\frac{1}{2})^{n-1}}$.…(6分)
(Ⅱ)因为${b_n}=\frac{3n-1}{a_n}=(3n-1)•{2^{n-1}}$,所以${T_n}=2×{2^0}+5×{2^1}+8×{2^2}+…+(3n-1)×{2^{n-1}}$
两边同乘2得:$2{T_n}=2×{2^1}+5×{2^2}+…+(3n-4)×{2^{n-1}}+(3n-1)×{2^n}$
相减得:$-{T_n}=2×{2^0}+3×{2^1}+3×{2^2}+…+3×{2^{n-1}}-(3n-1)×{2^n}$
所以$-{T_n}=2+\frac{{3•2-3•{2^{n-1}}•2}}{1-2}-(3n-1)•{2^n}$
整理得${T_n}=(3n-4){2^n}+4$.…(12分)

点评 本题考查数列求和,通项公式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列命题中:
①“?x0∈R,x02-x0+1≤0”的否定;
②“若x2+x-6≥0,则x>2”的否命题;
③命题“若x2-5x+6=0,则x=2”的逆否命题;
其中真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,公比q=2,a1+a4+a7…+a97=11,则数列{an}的前99项的和S99=(  )
A.99B.88C.77D.66

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若定义域为R的函数f(x)在(4,+∞)上为减函数,且f(4+x)=f(4-x),对任意实数x都成立,则(  )
A.f(2)>f(3)B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=-|3x+a|在区间[-2,+∞)上是减函数,求实数a取值范围a≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算下列各式的值 (其中,e为自然对数的底数):
(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{({π+e})^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$;       
(2)$2lg5+lg4+ln\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若xlog23=1,则3x+9-x的值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)对定义域[-1,1]内的任意实数x,y总有f(x)+f(y)=f(x+y)
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式f(x2-1)+f(3-3x)<0
(3)若f(x)≤t2-2at+1对任意x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案