精英家教网 > 高中数学 > 题目详情

【题目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,ABAC,且AA1=AB=AC,则异面直线AB1BC1所成角为_____

【答案】

【解析】连结A1B

AA1⊥面ABC,平面A1B1C1∥面ABC

AA1⊥平面A1B1C1

A1C1平面A1B1C1AA1A1C1

∵△ABCA1B1C1是全等三角形,ABAC

A1B1A1C1

A1B1∩AA1=A1A1C1⊥平面AA1B1B

又∵AB1平面AA1B1BA1C1AB1

∵矩形AA1B1B中,AA1=AB

∴四边形AA1B1B为正方形,可得A1BAB1

A1B∩A1C1=A1AB1⊥平面A1BC1

结合BC1平面A1BC1,可得AB1BC1,即异面直线AB1BC1所成角为

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=2y的焦点为F,过抛物线上一点M作抛物线C的切线l,l交y轴于点N.
(1)判断△MFN的形状;
(2)若A,B两点在抛物线C上,点D(1,1)满足 + = ,若抛物线C上存在异于A,B的点E,使得经过A,B,E三点的圆与抛物线在点E处的有相同的切线,求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=

(I)若P是椭圆C上任意一点,求的取值范围;

(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)求函数的最小值;

(2)对一切 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小萌大学毕业后,家里给了她10万元,她想办一个“萌萌”加工厂,根据市场调研,她得出了一组毛利润(单位:万元)与投入成本(单位:万元)的数据如下:

投入成本

0.5

1

2

3

4

5

6

毛利润

1.06

1.25

2

3.25

5

7.25

9.98

为了预测不同投入成本情况下的利润,她想在两个模型中选一个进行预测.

(1)根据投入成本2万元和4万元的两组数据分别求出两个模型的函数解析式,请你根据给定数据选出一个较好的函数模型进行预测(不必说明理由),并预测她投入8万元时的毛利润;

(2)若小萌准备最少投入2万元开办加工厂,请预测加工厂毛利润率的最大值并说明理由.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12)如图所示,函数的一段图象过点

1)求函数的表达式;

2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题

①奇函数的图象一定通过原点

②函数是偶函数,但不是奇函数

③函数f(x)=ax﹣1+3的图象一定过定点P,则P点的坐标是(1,4)

④若f(x+1)为偶函数,则有f(x+1)=f(﹣x﹣1)

⑤若函数在R上的增函数,则实数a的取值范围为[4, 8)

其中正确的命题序号为________

查看答案和解析>>

同步练习册答案