精英家教网 > 高中数学 > 题目详情
20.若(3x-$\frac{1}{x}$)n展开式中各项系数之和为16,则展开式中含x2项的系数为-108.

分析 先求出二项式的指数n,再利用展开式的通项公式求出展开式中含x2项的系数.

解答 解:因为(3x-$\frac{1}{x}$)n展开式中各项系数之和为16,
令x=1,得出(3×1-$\frac{1}{1}$)n=16,
解得n=4;
所以(3x-$\frac{1}{x}$)4 展开式的通项公式为:
Tr+1=${C}_{4}^{r}$•(3x)4-r•${(-\frac{1}{x})}^{r}$=(-1)r•34-r•x4-2r
当4-2r=2时,解得r=1,
所以展开式中含 x2项的系数为:
(-1)1C4333=-108.
故答案为:-108.

点评 本题考查了二项式展开式中各项系数之和与通项公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,已知点A、B分别在x、y轴上运动,且|AB|=2,若$\overrightarrow m=\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$,则$|\overrightarrow m|$的取值范围是(  )
A.$[\frac{2}{3},\frac{4}{3}]$B.$[\frac{1}{3},\frac{2}{3}]$C.[0,2]D.$[0,\frac{{2\sqrt{5}}}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计$\int\begin{array}{l}1\\ 0\end{array}f(x)dx$的值约为(  )
A.$\frac{61}{100}$B.$\frac{39}{100}$C.$\frac{10}{100}$D.$\frac{117}{100}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.实数a,b,则(a+b)(1+a)>0,是$\frac{1-b}{1+a}$<1恒成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在二项式${(3{x^2}-\frac{1}{x})^n}$的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为(  )
A.-32B.0C.32D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)=\frac{{1-m•{2^x}}}{{1+m•{2^x}}}$.
(1)若f(x)是奇函数,求m的值;
(2)当m=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(3)若函数f(x)在[0,1]上是以3为上界的函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.两位女生和两位男生站成一排照相,则两位男生不相邻的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高二年级共有1600名学生,其中男生960名,640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.
(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;
(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?
数学成绩优秀数学成绩不优秀合计
男生a=12b=
女生c=d=34
合计n=100
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
P(k2≥k00.150.100.05
k02.0722.7063.841

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax3+bx2+cx+d有a>0,b2-3ac<0,证明:函数f(x)在(-∞,+∞)上单调递增.

查看答案和解析>>

同步练习册答案