精英家教网 > 高中数学 > 题目详情
抛物线y2=8x的焦点与椭圆
x 2
a 2
+
y 2
5
=1的焦点重合,则椭圆的离心率为(  )
A、
2
3
B、
1
2
2
5
5
C、
2
3
2
5
5
D、
1
2
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出抛物线的焦点坐标,由椭圆的一个焦点与抛物线的焦点重合得到椭圆是焦点在x轴上的椭圆,且求得半焦距c,然后利用a2=b2+c2求出椭圆的半长轴,则离心率可求.
解答: 解:由题意可得:抛物线y2=8x的焦点(2,0),
∵抛物线y2=8x的焦点与椭圆
x 2
a 2
+
y 2
5
=1的焦点重合,
∴a2-5=4,∴a2=9,
解得:a=3.
∴e=
c
a
=
2
3

故选A.
点评:本题考查了椭圆的简单性质,涉及圆锥曲线离心率的求解问题,一定要找到关于a,c的关系,隐含条件a2=b2+c2的应用是解答该题的关键,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列1,
3
5
,…,
2n-1
,…,则
21
是这个数列的第
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2≥2x的解集是(  )
A、{x|x≥2}
B、{x|x≤2}
C、{x|0≤x≤2}
D、{x|x≤0或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项非常值数列{an},{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.令cn=
bn
,则下列关于数列{cn}的说法正确的是(  )
A、该数列为等差数列
B、该数列为等比数列
C、该数列的每一项为奇数
D、该数列的每一项为偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5,6,8中任取两个不同的数,事件A为“取到的两个数的和为偶数”,事件B为“取到的两个数均为偶数“,则P(B|A)=(  )
A、
1
3
B、
2
3
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AA1⊥平面ABC,AA1=2,BC=2
3
,∠BAC=
π
2
,此三棱柱各个顶点都在一个球面上,则球的体积为(  )
A、
32π
3
B、16π
C、
25π
3
D、
31π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果是(  )
A、
11
12
B、
25
24
C、
3
4
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x成立,则称f(x)是回旋函数,且阶数为a.现有下列4个命题:
①幂函数必定不是回旋函数;
②若sinωx(ω≠0)为回旋函数,则其最小正周期必不大于2;
③若指数函数为回旋函数,则其阶数必大于1;
④若对任意一个阶数为a(a∈[0,+∞))的回旋函数f(x),方程f(x)=0均有实数根.
其中真命题的个数为(  )
A、1个B、2 个
C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是平行四边形,平面PAB⊥平面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F分别为AD,PC的中点.
(1)求证:EF⊥平面PBD;
(2)若AB=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案