精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为CC1和BB1的中点,则异面直线AE与D1F所成角的余弦值为(
A.0
B.
C.
D.

【答案】D
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系, 设正方体ABCD﹣A1B1C1D1中棱长为2,
则A(2,0,0),E(0,2,1),D1(0,0,2),F(2,2,1),
=(﹣2,2,1), =(2,2,﹣1),
设直线AE与D1F所成角为θ,
则cosθ=| |=
∴直线AE与D1F所成角的余弦值为
故选D.

以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线AE与D1F所成角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1 , 且a1+b1=5,a1 , b1∈N* , 设cn=a ,则数列{cn}的前10项和等于(
A.55
B.70
C.85
D.100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,a为常数,且a∈(0,1).
(1)若x0满足f(x0)=x0 , 则称x0为f(x)的一阶周期点,证明函数f(x)有且只有两个一阶周期点;
(2)若x0满足f(f(x0))=x0 , 且f(x0)≠x0 , 则称x0为f(x)的二阶周期点,当a= 时,求函数f(x)的二阶周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别是a,b,c,且A、B、C成等差数列
(1)若 ,求△ABC的面积
(2)若sinA、sinB、sinC成等比数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱ABC﹣A1B1C1的各个棱长都相等,E为BC的中点,动点F在CC1上,且不与点C重合
(1)当CC1=4CF时,求证:EF⊥A1C
(2)设二面角C﹣AF﹣E的大小为α,求tanα的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2 . (Ⅰ)求函数的单调区间;
(Ⅱ)若函数f(x)有两个零点x1 , x2 , 证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和为Sn
(1)若Sn=2n﹣1,求数列{an}的通项公式;
(2)若a1= ,Sn=anan+1 , an≠0,求数列{an}的通项公式;
(3)设无穷数列{an}是各项都为正数的等差数列,是否存在无穷等比数列{bn},使得an+1=anbn恒成立?若存在,求出所有满足条件的数列{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案