精英家教网 > 高中数学 > 题目详情
6.若对任意x∈R,都有f(x)<f(x+1),那么f(x)在R上 (  )
A.一定单调递增B.一定没有单调减区间
C.可能没有单调增区间D.一定没有单调增区间

分析 根据对任意x∈R,都有f(x)<f(x+1),根据函数的单调性的定义可得结论.

解答 解:若f(x)是增函数,则由x<x+1可知f(x)<f(x+1)一定成立,但F(x)<F(x+1)
并不能保证f(x)<f(x+0.5),比如令f(x)=x+sin2πx
则f(x+1)=x+1+sin2πx=f(x)+1>f(x)但显然它不单调,因此,无法证明f(x)是增函数,
同理,函数f(x)可能没有单调增区间,可能没有单调减区间.
故选C.

点评 本题考查了对函数单调性的定义的理解和运用能力.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求下列各式的值:
(1)lg52+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2
(2)cos$\frac{17π}{4}$+sin$\frac{13π}{3}$+tan$\frac{25π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,M是BC的中点,AM=1,点P在AM上,且满足$\overrightarrow{PA}$=-$\overrightarrow{PM}$,则$\overrightarrow{PA}$•($\overrightarrow{PB}+\overrightarrow{PC}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知矩形ABCD中,AB=2BC,若椭圆的焦点是AD,BC的中点,且点A,B,C,D在椭圆上,则该椭圆的离心率为$\frac{\sqrt{17}-1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…+$\frac{{{x^{2015}}}}{2015}$;g(x)=1-x+$\frac{x^2}{2}$-$\frac{x^3}{3}$+$\frac{x^4}{4}$-…-$\frac{{{x^{2015}}}}{2015}$;设函数F(x)=[f(x+3)]2015•[g(x-4)]2016,且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)和g(x)都是定义在R上的函数,则“f(x)与g(x)同是奇函数或同是偶函数”是“f(x)•g(x)是偶函数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知回归直线的斜率为-1,样本点中心为(1,2),则回归直线方程为(  )
A.$\widehat{y}$=x+3B.$\widehat{y}$=-x+3C.$\widehat{y}$=-x-3D.$\widehat{y}$=-2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在$\sqrt{3}$sinx+cosx=2a-3,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]中,a的取值范围是[$\frac{3-\sqrt{3}}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是(  )
A.${(x-2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$B.${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$
C.${(x+2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$D.${(x+2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$

查看答案和解析>>

同步练习册答案