分析 由题意可知:设AB=4t,CB=2t,c=2t,则B(2t,t),丨BF2丨=t,由勾股定理可知:丨BF1丨=$\sqrt{(4t)^{2}+{t}^{2}}$=$\sqrt{17}$t,根据椭圆的定义可知丨BF1丨+丨BF2丨=2a,根据离心率公式,即可求得椭圆的离心率.
解答
解:设AD,BC的中点分别为F1,F2,由题意可知:矩形ABCD是以F1,F2为焦点的椭圆的内接矩形,
设AB=4t,CB=2t,c=2t,
则B(2t,t),
∴丨BF2丨=t,丨BF1丨=$\sqrt{(4t)^{2}+{t}^{2}}$=$\sqrt{17}$t,
由椭圆的定义可知:丨BF1丨+丨BF2丨=2a=($\sqrt{17}$+1)t,
由椭圆的离心率e=$\frac{c}{a}$=$\frac{2c}{2a}$=$\frac{4}{\sqrt{17}+1}$=$\frac{\sqrt{17}-1}{4}$,
该椭圆的离心率$\frac{\sqrt{17}-1}{4}$,
故答案为:$\frac{\sqrt{17}-1}{4}$.
点评 本题考查椭圆的定义,考查椭圆离心率公式的求法,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14 | B. | 12 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定单调递增 | B. | 一定没有单调减区间 | ||
| C. | 可能没有单调增区间 | D. | 一定没有单调增区间 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |a-b|≤|a|+|b| | B. | |a-b|≤|a-c|+|b-c| | C. | $\frac{b}{a}$<$\frac{b+c}{a+c}$ | D. | a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com