精英家教网 > 高中数学 > 题目详情
14.已知矩形ABCD中,AB=2BC,若椭圆的焦点是AD,BC的中点,且点A,B,C,D在椭圆上,则该椭圆的离心率为$\frac{\sqrt{17}-1}{4}$.

分析 由题意可知:设AB=4t,CB=2t,c=2t,则B(2t,t),丨BF2丨=t,由勾股定理可知:丨BF1丨=$\sqrt{(4t)^{2}+{t}^{2}}$=$\sqrt{17}$t,根据椭圆的定义可知丨BF1丨+丨BF2丨=2a,根据离心率公式,即可求得椭圆的离心率.

解答 解:设AD,BC的中点分别为F1,F2,由题意可知:矩形ABCD是以F1,F2为焦点的椭圆的内接矩形,
设AB=4t,CB=2t,c=2t,
则B(2t,t),
∴丨BF2丨=t,丨BF1丨=$\sqrt{(4t)^{2}+{t}^{2}}$=$\sqrt{17}$t,
由椭圆的定义可知:丨BF1丨+丨BF2丨=2a=($\sqrt{17}$+1)t,
由椭圆的离心率e=$\frac{c}{a}$=$\frac{2c}{2a}$=$\frac{4}{\sqrt{17}+1}$=$\frac{\sqrt{17}-1}{4}$,
该椭圆的离心率$\frac{\sqrt{17}-1}{4}$,
故答案为:$\frac{\sqrt{17}-1}{4}$.

点评 本题考查椭圆的定义,考查椭圆离心率公式的求法,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,已知a3+a9=16,则a5+a7=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和Sn=-$\frac{1}{2}$n2+kn(k∈N*),且Sn的最大值为8.
(1)求常数k的值,并求an
(2)对任意m∈N*,将数列{an}中落入区间(-4m,-2m)内的项的个数记为bm,若cm=$\frac{{a}_{m}•{b}_{m}}{{2}^{m}}$,求数列{cn}的前m项和Tm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|},{x≤2}\\{(x-2)^{2}},{x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有2个零点,则b的取值范围是2<b,b=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有(  )盏灯.
A.14B.12C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中是奇函数的有几个(  )
①$y=\frac{{{a^x}+1}}{{{a^x}-1}}$;
②$y=\frac{{lg({1-{x^2}})}}{{|{x+3}|-3}}$;
③y=ln|x-1|;
④$y={log_a}\frac{1+x}{1-x}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若对任意x∈R,都有f(x)<f(x+1),那么f(x)在R上 (  )
A.一定单调递增B.一定没有单调减区间
C.可能没有单调增区间D.一定没有单调增区间

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a,b,c为互不相等的正数,则下列不等式不一定成立的是(  )
A.|a-b|≤|a|+|b|B.|a-b|≤|a-c|+|b-c|C.$\frac{b}{a}$<$\frac{b+c}{a+c}$D.a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案