【题目】已知函数
.
(1)试讨论函数
的极值点的个数;
(2)若
,且
恒成立,求a的最大值.
参考数据:
| 1.6 | 1.7 | 1.74 | 1.8 | 10 |
| 4.953 | 5.474 | 5.697 | 6.050 | 22026 |
| 0.470 | 0.531 | 0.554 | 0.588 | 2.303 |
【答案】(1)当
时,
没有极值点;
时,
有唯一极大值点,没有极小值点;(2)10.
【解析】
(1)根据函数解析式,求得导函数,对
分类讨论即可由函数单调性确定极值点.
(2)由(1)可知当
时,
有唯一极大值点
,由
恒成立代入化简可知
,根据零点存在定理可知
,从而讨论
及
讨论,即可确定a的最大值,再代入检验.
(1)函数
,定义域为
,
则
,
当
时,
,
在定义域
单调递减,
没有极值点;
当
时,
在
单调递减且图像连续,
,
时
,
∴存在唯一正数
,使得
,
函数
在
单调递增,在
单调递减,
∴函数
有唯一极大值点
,没有极小值点,
综上:当
时,
没有极值点;
当
时,
有唯一极大值点,没有极小值点.
(2)由(1)知,当
时,
有唯一极大值点
,
∴
,
由
恒成立
,
∵
,∴
,
∴![]()
令
,则
在
单调递增,
由于
,
,
∴存在唯一正数
,使得
,从而
.
由于
恒成立,
①当
时,
成立;
②当
时,由于
,
∴
.
令
,当
时,
,
∴
在
单调递减,从而
,
∵
,且
,且
,
∴
.
下面证明
时,
.
,且
在
单调递减,由于
,
,
∴存在唯一
,使得
,
∴
.
令
,易知
在
单调递减,
∴
,
∴
,即
时,
.
∴a的最大值是10.
科目:高中数学 来源: 题型:
【题目】设
、
是椭圆
的左、右顶点,
为椭圆上异于
、
的一点.
(1)
是椭圆
的上顶点,且直线
与直线
垂直,求点
到
轴的距离;
(2)过点
的直线
(不过坐标原点)与椭圆
交于
、
两点,且点
在
轴上方,点
在
轴下方,若
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的短轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)若动直线
与椭圆
有且仅有一个公共点,分别过
两点作
,垂足分别为
,且记
为点
到直线
的距离,
为点
到直线
的距离,
为点
到点
的距离,试探索
是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为![]()
=
(
>0),过点
的直线
的参数方程为
(t为参数),直线
与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线
的普通方程;
(Ⅱ)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
,直线的参数方程为
,(
为参数).直线
与曲线
交于
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程.
(2)设
,若
成等比数列,求
和的
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.
![]()
(1)求频率分布直方图中
的值并估计这50户用户的平均用电量;
(2)若将用电量在区间
内的用户记为
类用户,标记为低用电家庭,用电量在区间
内的用户记为
类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:
![]()
①从
类用户中任意抽取3户,求恰好有2户打分超过85分的概率;
②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有
的把握认为“满意度与用电量高低有关”?
满意 | 不满意 | 合计 | |
| |||
| |||
合计 |
附表及公式:
| <>0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济的不断发展和人们消费观念的不断提升,越来越多的人日益喜爱旅游观光.某人想在2019年5月到某景区
旅游观光,为了避开旅游高峰拥挤,方便出行,他收集了最近5个月该景区的观光人数数据见下表:
月份 | 2018.12 | 2019.1 | 2019.2 | 2019.3 | 2019.4 |
月份编号 | 1 | 2 | 3 | 4 | 5 |
旅游观光人数 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型拟合旅游观光人数少
(百万人)与月份编号
之间的相关关系,请用最小二乘法求
关于
的线性回归方程
,并预测2019年5月景区
的旅游观光人数.
(2)当地旅游局为了预测景区
给当地的财政带来的收入状况,从2019年4月的旅游观光人群中随机抽取了200人,并对他们旅游观光过程中的开支情况进行了调查,得到如下频率分布表:
开支金额(千元) |
|
|
|
|
|
|
|
频数 | 10 | 30 | 40 | 60 | 30 | 20 | 10 |
若采用分层抽样的方法从开支金额低于4千元的游客中抽取8人,再在这8人中抽取3人,记这3人中开支金额低于3千元的人数为
,求
的分布列和数学期望.
(参考公式:
,其中
,
.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com