·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¬É϶¥µãΪA£¬ÇÒ¡÷AOFµÄÃæ»ýΪ$\frac{1}{2}$£¨OÎª×ø±êԵ㣩£¬Áгö·½³Ì×飬Çó³öa=$\sqrt{2}$£¬b=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬${x}_{1}¡Ê£¨0£¬\sqrt{2}£©$£¬Á¬½áOM£¬OP£¬Çó³ö|PF|+|PM|=|QF|+|QM|=$\sqrt{2}$£¬´Ó¶øÇó³ö¡÷PFQµÄÖܳ¤Îª¶¨Öµ2$\sqrt{2}$£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¬É϶¥µãΪA£¬![]()
ÇÒ¡÷AOFµÄÃæ»ýΪ$\frac{1}{2}$£¨OÎª×ø±êԵ㣩£®
¡à$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{2}bc=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨2£©ÉèµãPÔÚµÚÒ»ÏóÏÞ£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬${x}_{1}¡Ê£¨0£¬\sqrt{2}£©$£¬
¡à|PF|=$\sqrt{£¨{x}_{1}-1£©^{2}+{{y}_{1}}^{2}}$=$\sqrt{{{x}_{1}}^{2}-2{x}_{1}+1+1-\frac{{{x}_{1}}^{2}}{2}}$
=$\sqrt{\frac{1}{2}{{x}_{1}}^{2}-2{x}_{1}+2}$=$\sqrt{\frac{1}{2}£¨{x}_{1}-2£©^{2}}$=$\frac{\sqrt{2}}{2}£¨2-{x}_{1}£©$£¬
Á¬½áOM£¬OP£¬Ôò|PM|=$\sqrt{|OP{|}^{2}-|OM{|}^{2}}$
=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}-1}$=$\sqrt{{{x}_{1}}^{2}+1-\frac{{{x}_{1}}^{2}}{2}-1}$=$\frac{\sqrt{2}}{2}{x}_{1}$£¬
¡à|PF|+|PM|=$\frac{\sqrt{2}}{2}£¨2-{x}_{1}£©+\frac{\sqrt{2}}{2}{x}_{1}=\sqrt{2}$£¬
ͬÀí£¬|QF|+|QM|=$\sqrt{2}$£¬
¡à|PF|+|QF|+|PQ|=|PF|+|QF|+|PM|+|QM|=2$\sqrt{2}$£¬
¡à¡÷PFQµÄÖܳ¤Îª¶¨Öµ2$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Á½Õ¼¼ä¾àÀ빫ʽ¡¢Ö±Ïß·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬¿¼²é´´ÐÂÒâʶ¡¢Ó¦ÓÃÒâʶ£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 81 | B£® | 79 | C£® | 77 | D£® | 75 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}$ | B£® | 2 | C£® | $\sqrt{5}$ | D£® | 5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | p¡Äq | B£® | ©Vp¡Äq | C£® | p¡Ä©Vq | D£® | £¨©Vp£©¡Ä£¨©Vq£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com