8£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¬É϶¥µãΪA£¬ÇÒ¡÷AOFµÄÃæ»ýΪ$\frac{1}{2}$£¨OÎª×ø±êÔ­µã£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãMÔÚÒÔÍÖÔ²CµÄ¶ÌÖáΪֱ¾¶µÄÔ²ÉÏ£¬ÇÒMÔÚµÚÒ»ÏóÏÞ£¬¹ýM×÷´ËÔ²µÄÇÐÏß½»ÍÖÔ²ÓÚP£¬QÁ½µã£®ÊÔÎÊ¡÷PFQµÄÖܳ¤ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó´Ë¶¨Öµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¬É϶¥µãΪA£¬ÇÒ¡÷AOFµÄÃæ»ýΪ$\frac{1}{2}$£¨OÎª×ø±êÔ­µã£©£¬Áгö·½³Ì×飬Çó³öa=$\sqrt{2}$£¬b=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬${x}_{1}¡Ê£¨0£¬\sqrt{2}£©$£¬Á¬½áOM£¬OP£¬Çó³ö|PF|+|PM|=|QF|+|QM|=$\sqrt{2}$£¬´Ó¶øÇó³ö¡÷PFQµÄÖܳ¤Îª¶¨Öµ2$\sqrt{2}$£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¬É϶¥µãΪA£¬
ÇÒ¡÷AOFµÄÃæ»ýΪ$\frac{1}{2}$£¨OÎª×ø±êÔ­µã£©£®
¡à$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{2}bc=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨2£©ÉèµãPÔÚµÚÒ»ÏóÏÞ£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬${x}_{1}¡Ê£¨0£¬\sqrt{2}£©$£¬
¡à|PF|=$\sqrt{£¨{x}_{1}-1£©^{2}+{{y}_{1}}^{2}}$=$\sqrt{{{x}_{1}}^{2}-2{x}_{1}+1+1-\frac{{{x}_{1}}^{2}}{2}}$
=$\sqrt{\frac{1}{2}{{x}_{1}}^{2}-2{x}_{1}+2}$=$\sqrt{\frac{1}{2}£¨{x}_{1}-2£©^{2}}$=$\frac{\sqrt{2}}{2}£¨2-{x}_{1}£©$£¬
Á¬½áOM£¬OP£¬Ôò|PM|=$\sqrt{|OP{|}^{2}-|OM{|}^{2}}$
=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}-1}$=$\sqrt{{{x}_{1}}^{2}+1-\frac{{{x}_{1}}^{2}}{2}-1}$=$\frac{\sqrt{2}}{2}{x}_{1}$£¬
¡à|PF|+|PM|=$\frac{\sqrt{2}}{2}£¨2-{x}_{1}£©+\frac{\sqrt{2}}{2}{x}_{1}=\sqrt{2}$£¬
ͬÀí£¬|QF|+|QM|=$\sqrt{2}$£¬
¡à|PF|+|QF|+|PQ|=|PF|+|QF|+|PM|+|QM|=2$\sqrt{2}$£¬
¡à¡÷PFQµÄÖܳ¤Îª¶¨Öµ2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Á½Õ¼¼ä¾àÀ빫ʽ¡¢Ö±Ïß·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬¿¼²é´´ÐÂÒâʶ¡¢Ó¦ÓÃÒâʶ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ×ó½¹µãΪF£¨-1£¬0£©£¬×ó×¼ÏßΪx=-2£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£®
¢ÙÈôÖ±Ïßl¾­¹ýÍÖÔ²CµÄ×ó½¹µãF£¬½»yÖáÓÚµãP£¬ÇÒÂú×ã$\overrightarrow{PA}=¦Ë\overrightarrow{AF}$$\overrightarrow{PB}=¦Ì\overrightarrow{BF}$£¬ÇóÖ¤£º¦Ë+¦ÌΪ³£Êý£»
¢ÚÈôOA¡ÍOB£¨OΪԭµã£©£¬Çó¡÷AOBµÄÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÉèÊýÁÐ{an}Âú×ãa2+a4=10£¬µãPn£¨n£¬an£©¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐÏòÁ¿$\overrightarrow{{P_n}{P_{n+1}}}=£¨{1£¬2}£©$£¬ÔòÊýÁÐ{an}µÄǰnÏîºÍSn=n2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬Èôa3+a5+a7=27£¬ÔòS9=£¨¡¡¡¡£©
A£®81B£®79C£®77D£®75

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôÃüÌâp£º?x¡ÊR£¬x2+2ax+1¡Ý0ÊÇÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-1£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô¸´Êýz-i=1+i£¬Ôò|z|=£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®2C£®$\sqrt{5}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÃüÌâp£¬?x¡ÊR¶¼ÓÐ2x£¼3x£¬ÃüÌâq£º?x0¡ÊR£¬Ê¹µÃ${x_0}^3=1-{x_0}^2$£¬ÔòÏÂÁи´ºÏÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®©Vp¡ÄqC£®p¡Ä©VqD£®£¨©Vp£©¡Ä£¨©Vq£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¶ÔÓÚÎÞÇîÊýÁÐ{an}£¬¼ÇT={x|x=aj-ai£¬i£¼j}£¬ÈôÊýÁÐ{an}Âú×㣺¡°´æÔÚt¡ÊT£¬Ê¹µÃÖ»Òªam-ak=t£¨m£¬k¡ÊN*ÇÒm£¾k£©£¬±ØÓÐam+1-ak+1=t¡±£¬Ôò³ÆÊýÁÐ{an}¾ßÓÐÐÔÖÊP£¨t£©£®
£¨¢ñ£©ÈôÊýÁÐ{an}Âú×ã${a_n}=\left\{{\begin{array}{l}{2n£¬n¡Ü2}\\{2n-5£¬n¡Ý3}\end{array}}\right.$ÅжÏÊýÁÐ{an}ÊÇ·ñ¾ßÓÐÐÔÖÊP£¨2£©£¿ÊÇ·ñ¾ßÓÐÐÔÖÊP£¨4£©£¿
£¨¢ò£©ÇóÖ¤£º¡°TÊÇÓÐÏÞ¼¯¡±ÊÇ¡°ÊýÁÐ{an}¾ßÓÐÐÔÖÊP£¨0£©¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨¢ó£©ÒÑÖª{an}ÊǸ÷ÏîΪÕýÕûÊýµÄÊýÁУ¬ÇÒ{an}¼È¾ßÓÐÐÔÖÊP£¨2£©£¬ÓÖ¾ßÓÐÐÔÖÊP£¨5£©£¬ÇóÖ¤£º´æÔÚÕûÊýN£¬Ê¹µÃaN£¬aN+1£¬aN+2£¬¡­£¬aN+k£¬¡­ÊǵȲîÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª¸´ÊýzÂú×ãi•z=3-4i£¨ÆäÖÐiΪÐéÊýµ¥Î»£©£¬Ôò|z|=5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸