精英家教网 > 高中数学 > 题目详情
(2012•肇庆一模)设函数f(x)=x2+aln(x+1).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数F(x)=f(x)+ln
2
有两个极值点x1,x2且x1<x2,求证F(x2)>
1
4
分析:(Ⅰ)由函数f(x)的定义域为(-1,+∞),f(x)=2x+
a
x+1
=
2x2+2x+a
x+1
,令g(x)=2x2+2x+a,则△=4-8a.由根的判断式进行分类讨论,能求出函数f(x)的单调区间.
(Ⅱ)由F′(x)=f′(x),知函数F(x)有两个极值点时,0<a<
1
2
,0<
1-2a
<1,由此推导出x2=
-1+
1-2a
2
∈(-
1
2
,0),且g(x2)=0,即a=-(2x22+2x2),F(x2)=x22-(2x22+2x2)ln(1+x2)+ln
2
,构造函数h(x)=x2-(2x2+2x)ln(1+x)+ln
2
,能够证明F(x2)>
1
4
解答:解:(Ⅰ)函数f(x)的定义域为(-1,+∞),(1分)
f(x)=2x+
a
x+1
=
2x2+2x+a
x+1
,(x>-1),(2分)
令g(x)=2x2+2x+a,则△=4-8a.
①当△<0,即a
1
2
时,g(x)>0,从而f′(x)>0,
故函数f(x)在(-1,+∞)上单调递增;(3分)
②当△=0,即a=
1
2
时,g(x)≥0,此时f′(x)≥0,此时f′(x)在f′(x)=0的左右两侧不变号,
故函数f(x)在(-1,0)上单调递增; (4分)
③当△>0,即a<
1
2
时,g(x)=0的两个根为x1=
-1-
1-2a
2
x2=
-1+
1-2a
2
>-
1
2

1-2a
≥1
,即a≤0时,x1≤-1,当0<a<
1
2
时,x1>-1.
故当a≤0时,函数f(x)在(-1,
-1+
1-2a
2
)单调递减,在(
-1+
1-2a
2
,+∞)单调递增;
当0<a<
1
2
时,函数f(x)在(-1,
-1-
1-2a
2
),(
-1+
1-2a
2
,+∞)单调递增,
在(
-1-
1-2a
2
-1+
1-2a
2
)单调递减.(7分)
(Ⅱ)∵F(x)=f(x)+ln
2
,∴F′(x)=f′(x),
∴当函数F(x)有两个极值点时0<a<
1
2
,0<
1-2a
<1,
故此时x2=
-1+
1-2a
2
∈(-
1
2
,0),且g(x2)=0,即a=-(2x22+2x2),(9分)
∴F(x2)=x22+aln(1+x2)+ln
2

=x22-(2x22+2x2)ln(1+x2)+ln
2

设h(x)=x2-(2x2+2x)ln(1+x)+ln
2
,其中-
1
2
<x<0
,(10分)
则h′(x)=2x-2(2x+1)ln(1+x)-2x=-2(2x+1)ln(1+x),
由于-
1
2
<x<0
时,h′(x)>0,
故函数h(x)在(-
1
2
,0)上单调递增,
故h(x).h(-
1
2
)=
1
4

∴F(x2)=h(x2)>
1
4
.(14分)
点评:本题考查函数的单调区间的求法,考查不等式的证明,综合性强,难度大,对数学思维能力要求较高.解题时要认真审题,注意导数性质、分类讨论思想、等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.
(1)求此四棱锥的体积;
(2)若E是PD的中点,求证:AE⊥平面PCD;
(3)在(2)的条件下,若F是PC的中点,证明:直线AE和直线BF既不平行也不异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5,
(1)求{an}的通项公式an和前n项和Sn
(2)设Cn=
5-an2
bn=2Cn
,证明数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5.
(Ⅰ)求{an}的通项an
(Ⅱ)设cn=
5-an2
bn=2cn,求T=log2b1+log2b2+log2b3+…+log2bn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知集合M={0,1,2},集合N满足N⊆M,则集合N的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知函数f(x)=lgx的定义域为M,函数y=
2x,x>2
-3x+1,x<1
的定义域为N,则M∩N=(  )

查看答案和解析>>

同步练习册答案