精英家教网 > 高中数学 > 题目详情
12.设函数$f(x)=\frac{{{{(sinx+1)}^2}}}{{{{sin}^2}x+1}}$的最大值为M,最小值为m,则M+m=2.

分析 通过换元可知y=f(x)=1+$\frac{2t}{{t}^{2}+1}$,其中t=sinx∈[-1,1],利用z=$\frac{2t}{{t}^{2}+1}$为奇函数可知zmax+zmin=0,进而M+m=(1+zmax)+(1+zmin)=2.

解答 解:由题可知t=sinx∈[-1,1],则y=f(x)=1+$\frac{2t}{{t}^{2}+1}$,
令z=$\frac{2t}{{t}^{2}+1}$,则当t=0时z=0,且函数z为奇函数,
所以zmax+zmin=0,
又因为M+m=(1+zmax)+(1+zmin),
所以M+m=2+(zmax+zmin)=2,
故答案为:2.

点评 本题考查函数的最值及其几何意义,考查函数的奇偶性,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知两个向量$\overrightarrow{a}$,$\overrightarrow{b}$对应的复数是 z1=3和z2=5+5i,求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$P({\sqrt{2},1})$,左右焦点分别为F1,F2,且线段PF1与y轴的交点Q恰好为线段PF1的中点,O为坐标原点.
(1)求椭圆C的离心率;
(2)与直线PF1的斜率相同的直线l与椭圆C相交于A,B两点,求当△AOB的面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两名技工在相同的条件下生产某种零件,连续6天中,他们日加工的合格零件数的统计数据的茎叶图,如图所示.
(1)写出甲、乙的中位数和众数;
(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$sinα=\frac{{\sqrt{10}}}{10}$,$sin(α-β)=-\frac{{\sqrt{5}}}{5}$,$α,β∈(0,\frac{π}{2})$,则β=(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.把地球看作是半径为R的球,A点位于北纬30°,东经20°,B点位于北纬30°,东经80°,求A、B两点间的球面距离R•arccos$\frac{5}{8}$(结果用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C和x轴相切,圆心在第三象限并在直线3x-y=0上,且被直线y=x截得的弦长为$2\sqrt{7}$
(1)求圆C的方程.
(2)已知直线l:ax+y+6=0与圆C没有公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,复数z满足z=i(i-1),则z的虚部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,△A'B'C'是△ABC的直观图,其中A'B'=A'C',那么△ABC是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形

查看答案和解析>>

同步练习册答案