【题目】在极坐标系中,已知某曲线C的极坐标方程为,直线的极坐标方程为
(1)求该曲线C的直角坐标系方程及离心率
(2)已知点为曲线C上的动点,求点到直线的距离的最大值。
【答案】(1);(2).
【解析】
试题分析:(1)由知曲线C的极坐标方程为可化为直角坐标系方程,由于在椭圆方程中,故可求出离心率;(2)因为直线的极坐标方程为,所以直线的直角坐标系方程为,方法一:因为曲线C的参数方程为为参数),所以可设点的坐标为,则点到直线的距离为,所以当,即时, .方法二:设与直线平行且与曲线C相切的直线为,联立消去整理得,令得,当时,切点到直线的距离最大.
试题解析:解:(1)由知曲线C的极坐标方程为可化为直角坐标系方程即 ..3分
由于在椭圆方程中 ..4分
故离心率 ..6分
(2)因为直线的极坐标方程为,
所以直线的直角坐标系方程为 ..8分
法一:因为曲线C的参数方程为为参数),所以可设点的坐标为 ..9分
则点到直线的距离为 ..11分
所以当 ..12分
即时, ..13分
法二:设与直线平行且与曲线C相切的直线为 ..8分
联立消去整理得 ..10分
则,令得 ..11分
当时,切点到直线的距离最大为 ..13分.
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)的函数f(x)满足如下三个条件:
①对于任意正实数a、b,都有f(ab)=f(a)+f(b)-1;
②f(2)=0;
③x>1时,总有f(x)<1.
(1)求f(1)及的值;
(2)求证:函数f(x)在(0,+∞)上是减函数;
(3)如果存在正数k,使关于x的方程f(kx)+f(2-x)=-1有解,求正实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)分别求A∩B,(RA)∪(RB);
(2)已知集合C={x|a<x<a2+1},若CA,求满足条件的实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线: ,已知过点的直线的参数方程为(为参数),直线与曲线分别交于、两点.
(1)写出曲线和直线的直角坐标方程.
(2)若, , 成等比数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ln(1+x).
(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y=g(x),当x≥0时,f(x)≤ ,求t的最小值;
(2)当n∈N*时,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线()与轴交于点,动圆与直线相切,并且与圆相外切,
(1)求动圆的圆心的轨迹的方程;
(2)若过原点且倾斜角为的直线与曲线交于两点,问是否存在以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C: ,直线与抛物线C交于A,B两点.
(1)若直线过抛物线C的焦点,求.
(2)已知抛物线C上存在关于直线对称的相异两点M和N,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com