精英家教网 > 高中数学 > 题目详情
(1)已知函数f(x)=ax+b,f(1)=5,f(-3)=-3,求f(x)
(2)已知函数f(x)与g(x)分别由下表给出:
x12
f(x)36
x12
g(x)21
用分段函数表示y=f[g(x)],并画出函数y=f[g(x)]的图象.
考点:分段函数的应用,函数的值
专题:计算题,函数的性质及应用
分析:(1)由条件得到a,b的方程组,解出即可;
(2)由图表,求出x=1、x=2的函数值,即可,并画出图象,注意是孤立的点.
解答: 解:(1)∵f(1)=5,f(-3)=-3,
a+b=5
-3a+b=-3

a=2
b=3

∴f(x)=2x+3;
(2)f[g(x)]=
6  x=1
3  x=2

函数y=f[g(x)]的图象如图所示.
点评:本题考查分段函数及运用,考查函数的解析式的求法,以及分段函数的图象,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是各项都为正数的等比数列,且a3=4,a5=16.
(Ⅰ)求等比数列{an}的通项公式;
(Ⅱ)求等比数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

对某电子元件进行寿命追踪调查,其频率分布直方图如下:
根据图估计该电子元件寿命的众数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.求q的值;
(2)设数列{an}的前n项和为Sn,已知Sn=
n2+3n
2
,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x.
(1)若对于区间[-2,2]上任意的两个变量的值x1,x2都有|f(x1)-f(x2)|≤C,求实数C的最小值.
(2)若过点(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的侧棱都相等,底面ABCD是正方形,O为对角线AC、BD的交点,PO=OA.
(1)证明:BC∥面PAD;
(2)求直线PA与面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解初三年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如图:
组 别频数频率
[145.5,149.5)10.02
[149.5,153.5)40.08
[153.5,157.5)200.40
[157.5,161.5)150.30
[161.5,165.5)80.16
[165.5,169.5)mn
合 计MN
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)估计九年级学生中女生的身高在153.5以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和为Sn=
3n2+n
2
(n∈N*);
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{
1
anan+1
}的前n项和为Tn,是否存在实数M,使得M≥Tn对一切正整数都成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
tan(π-α)•cos(2π-α)•sin(
π
2
+α)
cos(-α-π)

(1)化简f(α);
(2)若f(α)=
4
5
,且α是第二象限角,求cos(2α+
π
4
)的值.

查看答案和解析>>

同步练习册答案