精英家教网 > 高中数学 > 题目详情
1.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样,
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1,
③某项测量结果ξ服从正态分布N (1,a2),P(ξ≤5)=0.81,则P(ξ≤-3)=0.19,
④对于两个分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
以上命题中其中真命题的个数为2.

分析 ①根据抽样方法的定义和特点即可判断;
②利用相关性系数r的意义去判断;
③根据正态分布的特点和曲线表示的意义来判断.
④根据随机变量k2的观测值k越大,“X与Y有关系”的把握程度越大,判断④是否为真命题.

解答 解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误,
②根据线性相关系数r的意义可知,当两个随机变量线性相关性越强,r的绝对值越接近于1,故②正确;
③某项测量结果ξ服从正态分布N(1,a2),则曲线关于直线x=1对称,P(ξ≤5)=P(1<ξ<5)+0.5=0.81,
则P(1<ξ<5)=0.31,故P(-3<ξ<1)=0.31,即有P(ξ≤-3)=P(ξ<1)-P(-3<ξ<1)=0.5-0.31=0.19,故③正确.
④根据两个分类变量X与Y的随机变量k2的观测值k来说,k越大,判断“X与Y有关系”的把握程度越大,得④是假命题.故④错误,
故正确的是②③,
故答案为:2

点评 本题考查命题的真假判断,涉及抽样方法的概念、相关系数的意义以及正态分布的特点和曲线表示的意义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求符合下列条件的圆的方程:
(1)圆心在点(0,2)且与直线x-2y+1=0相切;
(2)圆心在x轴上,且过点(3,$\sqrt{3}$)、(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知y=f(x)为定义在R上奇函数,并且当x∈(0,+∞)时,f(x)=2lnx-mx+$\frac{1}{2}$x2
(1)求f(x)的解析式;
(2)若f(x)在[1,2]上单调递减,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>mf(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T,若恒有f(x+T)=mf(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知T=1,y=f(x)是[0,+∞)上的m级类周期函数,且y=f(x)是[0,+∞)上的单调增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5},集合A=(1,2,5},∁UB=(1,3,5},则A∩B=(  )
A.{2}B.{5}C.{1,2,4,5}D.{3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知动点P(x,y)在双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线向左平移一个单位所得直线和x-y+3=0围成的区域内(含边界),则z=$\frac{x+2y-4}{x-2}$的范围为(  )
A.[$\frac{9}{11}$,$\frac{5}{3}$]B.[-5,$\frac{5}{3}$]C.[-5,$\frac{9}{11}$]D.[-3,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=sin2x在[-π,π]内满足$\frac{{f({x_1})}}{x_1}=\frac{{f({x_2})}}{x_2}=…\frac{{f({x_n})}}{x_n}$的n的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={0,1,2},B={x|x2-x-2<0},则A∩B=(  )
A.{0,1,2}B.{1,2}C.{0,1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设{an}是等比数列,公比q>1,前三项之和为7,前三项之积为8,正项数列{bn}前n项之和为Tn,b1=1,2Tn=bn(1+bn)(n∈N*).
(1)求{an},{bn}的通项公式;
(2)求{anbn}的前n项和.

查看答案和解析>>

同步练习册答案