【题目】(多选题)下列说法中,正确的命题是( )
A.已知随机变量
服从正态分布
,
,则
.
B.以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
,
的值分别是
和0.3.
C.已知两个变量具有线性相关关系,其回归直线方程为
,若
,
,
,则
.
D.若样本数据
,
,…,
的方差为2,则数据
,
,…,
的方差为16.
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列
的前
项和为
,已知
,且
对一切
都成立.
(1)当
时.
①求数列
的通项公式;
②若
,求数列
的前
项的和
;
(2)是否存在实数
,使数列
是等差数列.如果存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某学校高二年级学生的物理成绩,从中抽取
名学生的物理成绩(百分制)作为样本,按成绩分成5组:
,频率分布直方图如图所示,成绩落在
中的人数为20.
![]()
男生 | 女生 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
(1)求
和
的值;
(2)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数
和中位数
;
(3)成绩在80分以上(含80分)为优秀,样本中成绩落在
中的男、女生人数比为1:2,成绩落在
中的男、女生人数比为3:2,完成
列联表,并判断是否所有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:![]()
| 0.50 | 0.05 | 0.025 | 0.005 |
| 0.455 | 3.841 | 5.024 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《孙子算经》中记有如下问题:“今有五等诸侯,其分橘子六十颗,人別加三颗”,问:“五人各得几何?”其意思为:“现在有5个人分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,下列说法错误的是( )
A.得到橘子最多的诸侯比最少的多12个
B.得到橘子的个数排名为正数第3和倒数第3的是同一个人
C.得到橘子第三多的人所得的橘子个数是12
D.所得橘子个数为倒数前3的诸侯所得的橘子总数为24
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆M与直线
相切,且与圆N:
外切
(1)求动圆圆心M的轨迹C的方程;
(2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为A,B,当直线
与
的斜率之积为
时,求证:直线
过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com