函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D使得
=C,则称函数f(x)在D上的几何平均数为C.已知f(x)=x3,x∈[1,2],则函数f(x)=x3在[1,2]上的几何平均数为( )
A.
B.2
C.4 D.2![]()
科目:高中数学 来源: 题型:
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列,{bn}的前n项和为Sn,且Sn=2n+1-2.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=abn,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0在[0,1]上恒成立的________条件.(填充分但不必要,必要但不充分,充要,既不充分也不必要)
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=
x3-ax2-ax,g(x)=2x2+4x+c.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=sin
+
cos ωx(其中ω>0),且函数f(x)的图象的两条相邻的对称轴间的距离为
.
(1)求ω的值;
(2)将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间
上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB, BP=BC,E为PC的中点.
(1)求证:AP∥平面BDE;
(2)求证:BE⊥平面PAC.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com