精英家教网 > 高中数学 > 题目详情
如图所示,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于(  )
A.B.C.-1D.+1
A
类比题目中的椭圆,不妨取双曲线的右顶点为A(a,0),虚轴上的点为B(0,b),焦点为左焦点F(-c,0),则由BF⊥AB得,∴,∴,∴,两边同除,解得(舍去),故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的焦点和上顶点分别为,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆,判断是否相似,如果相似则求出的相似比,若不相似请说明理由;
(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时,是否与有关?并证明你的结论.
(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A为椭圆=1上任意一点,B为圆(x-1)2+y2=1上任意一点,则|AB|的最大值为________      最小值为 ________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的上顶点为,离心率为,若不过点的动直线与椭圆相交于两点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线过定点,并求出该定点的坐标.  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为为椭圆的上顶点,且.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆交于两点,直线)与椭圆交于两点,且,如图所示.
(ⅰ)证明:;
(ⅱ)求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆上存在一点P,使得点P到两焦点的距离之比为,则此椭圆离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)已知椭圆的右焦点与抛物线的焦点重合,椭圆与抛物线在第一象限的交点为,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的一个焦点为,则的值为___________,双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(12分)已知椭圆的中心在原点,分别为它的左、右焦点,直线为它的一条准线,又知椭圆上存在点,使得.
(1)求椭圆的方程;
(2)若是椭圆上不与椭圆顶点重合的任意两点,点关于轴的对称点是,直线分别交轴于点,点,探究是否为定值,若为定值,求出该定值,若不为定值,请说明理由.

查看答案和解析>>

同步练习册答案