精英家教网 > 高中数学 > 题目详情
7.已知n∈{5,6,7,8},若正n边形的任意两条对角线均与平面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的值是5.

分析 根据面面平行的判定定理,结合已知,可得正n边形的任意两条对角线均不平行,进而得到答案.

解答 解:根据面面平行的判定定理可得:
一个平面内的两条相交直线均与另一个平面平行,则面面平行,
若正n边形的任意两条对角线均与平面α平行,可得这个正n边形所在的平面一定平行于平面α,
则正n边形的任意两条对角线均不平行,
当n∈{5,6,7,8}时,只有5边形满足条件,
故答案为:5.

点评 本题考查的知识点是面面平行的判定定理,正确理解定理,并抓住定理的核心得到正n边形的任意两条对角线均不平行,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知F1,F2是距离为6的两个定点,动点M满足|MF1|+|MF2|=6,则M点的轨迹是(  )
A.椭圆B.直线C.线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若P,Q是椭圆9x2+16y2=144上两动点,O是其中心,OP⊥OQ,则中心O到直线PQ的距离为$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB和CD是两条异面直线,AB=CD=3,E,F分别为线段AD,BC上的点,且$\frac{AE}{ED}$=$\frac{BF}{FC}$=$\frac{1}{2}$,EF=$\sqrt{7}$,求AB和CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线斜率取得最小值时的直线方程为(  )
A.x+4y-2=0B.x-4y+2=0C.4x+2y-1=0D.4x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,点P为E上一动点,∠F1PF2=2θ.
(1)证明:当点P为短轴端点时∠F1PF2取最大值.
(2)若∠F1PF2=90°,求∠F1PF2的面积;
(3)求证:△F1PF2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆台的上、下底面圆半径分别为r,R,且圆台有内切球,求圆台的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.抛物线C:y=x2在点P处的切线l分别交x轴、y轴于不同的两点A、B,$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{MB}$.当点P在C上移动时,点M的轨迹为D.
(1)求曲线D的方程;
(2)设直线l与曲线D的另一个交点为N,曲线D在点M、N处的切线分别为m、n,直线m、n相交于点Q.证明:PQ平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四棱锥P-ABCD中,底面ABCD为正方形,边长为a,PB=$\sqrt{3}$a,PD=a,PA=PC=$\sqrt{2}$a,且PD是四棱锥的高.
(1)在四棱锥内翻入一球,求球的最大半径;
(2)求四棱锥外接球的半径.

查看答案和解析>>

同步练习册答案