精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,直线l过点P(1,0),倾斜角为$\frac{3π}{4}$.以坐标原点为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ;
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)记直线l和曲线C的两个交点分别为A,B,求|PA|+|PB|.

分析 (1)直线l过点P(1,0),倾斜角为$\frac{3π}{4}$.可得直线l的参数方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式可得圆的方程.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入圆C的方程可得:t2+$\sqrt{2}$t-3=0.可得|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$.

解答 解:(1)直线l过点P(1,0),倾斜角为$\frac{3π}{4}$.可得直线l的参数方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得圆的方程:x2+y2=4x.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入圆C的方程可得:t2+$\sqrt{2}$t-3=0.
∴t1+t2=-$\sqrt{2}$,t1•t2=-3,
∴|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-\sqrt{2})^{2}-4×(-3)}$=$\sqrt{14}$.

点评 本题考查了极坐标方程化为直角坐标方程、直线的参数方程及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设y=f(x)在R上有定义.对于给定的正数K,定义fk(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,取函数f(x)=$2-x-\frac{1}{e^x}$.若对任意的x∈R,恒有fk(x)=f(x),则(  )
A.K的最小值为1B.K的最小值为2C.K的最大值为1D.K的最大值为2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1中.
求证:
(1)A1C⊥BD;
(2)平面AB1D1∥平面BC1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=a-\frac{1}{x}$是定义在(0,+∞)上的函数.
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若函数y=f(x)在[m,n]上的值域是[2m,2n](m<n),求实数a的取值范围;
(3)若不等式x2|f(x)|≤1对$x∈[{\frac{1}{3},\frac{1}{2}}]$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍童,下广三丈,袤四丈,上袤二丈,无广,高一丈,问:积几何?其意思是说:“今有底面为矩形的屋脊状楔体,下底面宽3丈,长4丈;上棱长2丈,高一丈.问它的体积是多少?”已知一丈为10尺,现将该楔体的三视图给出如右图所示,其中网格纸上小正方形的边长为1,则该楔体的体积为(  )
A.5000立方尺B.5500立方尺C.6000立方尺D.6500立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,且an与2Sn的等差中项为1.
(1)求数列{an}的通项;
(2)对任意的n∈N*,不等式$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}≥\frac{λ}{{{a_n}^2}}$恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.i表示虚数单位,则1+i1+i2+…+i2014=i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,△O'A'B'是水平放置的△OAB的直观图,则△OAB的周长为(  )
A.$10+2\sqrt{13}$B.3$\sqrt{2}$C.$10+4\sqrt{13}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.实数m分别取什么数值时,复数z=(m+2)+(3-2m)i
(1)与复数12+17i互为共轭;
(2)复数的模取得最小值,求出此时的最小值.

查看答案和解析>>

同步练习册答案