精英家教网 > 高中数学 > 题目详情
15.设y=f(x)在R上有定义.对于给定的正数K,定义fk(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,取函数f(x)=$2-x-\frac{1}{e^x}$.若对任意的x∈R,恒有fk(x)=f(x),则(  )
A.K的最小值为1B.K的最小值为2C.K的最大值为1D.K的最大值为2

分析 根据新定义的函数建立fk(x)与f(x)之间的关系,通过二者相等得出实数k满足的条件,利用导数或者函数函数的单调性求解函数的最值,进而求出k的范围,进一步得出所要的结果.

解答 解:由题意可得出k≥f(x)最大值
由于f′(x)=-1+e-x,令f′(x)=0,e-x=1=e0解出-x=0,即x=0,
当x>0时,f′(x)<0,f(x)单调递减,
当x<0时,f′(x)>0,f(x)单调递增.
故当x=0时,f(x)取到最大值f(0)=2-1=1.
故当k≥1时,恒有fk(x)=f(x).
因此K的最小值是1.
故选:A.

点评 本题考查学生对新定义型问题的理解和掌握程度,理解好新定义的分段函数是解决本题的关键,将所求解的问题转化为求解函数的最值问题,利用了导数的工具作用,体现了恒成立问题的解题思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图所示,梯形ABCD的对角线交于点O,则下列四个结论:
①△AOB∽△COD;
②△AOD∽△ACB;
③S△DOC:S△AOD=CD:AB;
④S△AOD=S△BOC
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的倾斜角为$\frac{2π}{3}$,求线段PF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z1、z2分别对应复平面内的点M1、M2,且|z1+z2|=|z1-z2|,线段M1M2的中点M对应的复数为4+3i,则|z1|2+|z2|2等于(  )
A.10B.25C.100D.200

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:
①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2$\sqrt{2}$;
②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于$\frac{7\sqrt{3}}{3}$;
③在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=$\frac{7}{2}$;
④设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则$\frac{b}{c}$+$\frac{c}{b}$的取值范围是[2,$\sqrt{5}$]
其中正确说法的序号是①②③④(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集为R,集合A={y|y=3x,x≤1},B={x|x2-6x+8≤0},则A∪B=(0,4],A∩∁RB=(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的$\sqrt{3}$倍,其上一点到焦点的最短距离为$\sqrt{3}-\sqrt{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=kx+b与圆$O:{x^2}+{y^2}=\frac{3}{4}$相切,且交椭圆C于A,B两点,求当△AOB的面积最大时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.阅读如图所示的程序框图,则输出的S的值是(  )
A.$\frac{8}{9}$B.$\frac{9}{10}$C.$\frac{7}{8}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,直线l过点P(1,0),倾斜角为$\frac{3π}{4}$.以坐标原点为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ;
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)记直线l和曲线C的两个交点分别为A,B,求|PA|+|PB|.

查看答案和解析>>

同步练习册答案