| A. | K的最小值为1 | B. | K的最小值为2 | C. | K的最大值为1 | D. | K的最大值为2 |
分析 根据新定义的函数建立fk(x)与f(x)之间的关系,通过二者相等得出实数k满足的条件,利用导数或者函数函数的单调性求解函数的最值,进而求出k的范围,进一步得出所要的结果.
解答 解:由题意可得出k≥f(x)最大值,
由于f′(x)=-1+e-x,令f′(x)=0,e-x=1=e0解出-x=0,即x=0,
当x>0时,f′(x)<0,f(x)单调递减,
当x<0时,f′(x)>0,f(x)单调递增.
故当x=0时,f(x)取到最大值f(0)=2-1=1.
故当k≥1时,恒有fk(x)=f(x).
因此K的最小值是1.
故选:A.
点评 本题考查学生对新定义型问题的理解和掌握程度,理解好新定义的分段函数是解决本题的关键,将所求解的问题转化为求解函数的最值问题,利用了导数的工具作用,体现了恒成立问题的解题思想.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 25 | C. | 100 | D. | 200 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{9}$ | B. | $\frac{9}{10}$ | C. | $\frac{7}{8}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com