精英家教网 > 高中数学 > 题目详情
3.复数z1、z2分别对应复平面内的点M1、M2,且|z1+z2|=|z1-z2|,线段M1M2的中点M对应的复数为4+3i,则|z1|2+|z2|2等于(  )
A.10B.25C.100D.200

分析 以OM1,OM2为邻边的平行四边形OM1CM2为矩形,可得$\overrightarrow{OM}$=$\frac{1}{2}(\overrightarrow{O{M}_{1}}+\overrightarrow{O{M}_{2}})$,$|\overrightarrow{OM}|$=5.即可得出.

解答 解:以OM1,OM2为邻边的平行四边形OM1CM2为矩形,∴$\overrightarrow{OM}$=$\frac{1}{2}(\overrightarrow{O{M}_{1}}+\overrightarrow{O{M}_{2}})$,$|\overrightarrow{OM}|$=5.
∴|z1|2+|z2|2=2×(2×5)2=200.
故选:D.

点评 本题考查了复数的几何意义、向量平行四边形法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.以双曲线$\frac{x^2}{4}-\frac{y^2}{12}=-1$的焦点为顶点,顶点为焦点的椭圆方程是(  )
A.$\frac{x^2}{4}+\frac{y^2}{m}=1$B.$\frac{x^2}{m}-\frac{y^2}{2}=1$C.$\frac{x^2}{16}+\frac{y^2}{4}=1$D.$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若2a=5b=10,则$\frac{1}{a}$+$\frac{1}{b}$的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(l为参数,α为直线l的倾斜角).以原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两个坐标系下取相同的长度单位.
(Ⅰ)当α=$\frac{π}{4}$时,求直线l的极坐标方程;
(Ⅱ)若曲线C和直线l交于M,N两点,且|MN|=$\sqrt{15}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$tanθ=\frac{1}{3}$,则$sin({\frac{3}{2}π+2θ})$的值为(  )
A.$-\frac{4}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知{an}中,a1=1,nan+1=(n+1)an,则数列{an}的通项公式是(  )
A.an=$\frac{1}{n}$B.an=2n-1C.an=nD.an=$\frac{n+1}{2n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设y=f(x)在R上有定义.对于给定的正数K,定义fk(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,取函数f(x)=$2-x-\frac{1}{e^x}$.若对任意的x∈R,恒有fk(x)=f(x),则(  )
A.K的最小值为1B.K的最小值为2C.K的最大值为1D.K的最大值为2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|=5|MQ|.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为C,过点N(-2,3)的直线l被C所截得的线段长度为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=a-\frac{1}{x}$是定义在(0,+∞)上的函数.
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若函数y=f(x)在[m,n]上的值域是[2m,2n](m<n),求实数a的取值范围;
(3)若不等式x2|f(x)|≤1对$x∈[{\frac{1}{3},\frac{1}{2}}]$恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案