精英家教网 > 高中数学 > 题目详情
18.已知$tanθ=\frac{1}{3}$,则$sin({\frac{3}{2}π+2θ})$的值为(  )
A.$-\frac{4}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

分析 由已知利用诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式化简所求即可计算得解.

解答 解:∵tanθ=$\frac{1}{3}$,
∴$sin({\frac{3}{2}π+2θ})$=-cos2θ=$\frac{si{n}^{2}θ-co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ-1}{ta{n}^{2}θ+1}$=$\frac{\frac{1}{9}-1}{\frac{1}{9}+1}$=-$\frac{4}{5}$.
故选:A.

点评 本题主要考查了诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinx+lnx-kx(k>0)
(1)若函数f(x)在$(0,\frac{π}{2}]$单调递增,求k的取值范围
(2)设g(x)=sinx(x>0),若y=g(x)的图象在y=f(x)的图象上方,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x-1≤1},集合B={y|y=2x,x<1},则A∩(∁UB)=(  )
A.{x|0<x<2}B.C.{0,2}D.{x|x≤0或x=2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的倾斜角为$\frac{2π}{3}$,求线段PF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{2}sinx-\frac{{\sqrt{3}}}{2}cosx$.
(1)求函数的值域和最小正周期;
(2)求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z1、z2分别对应复平面内的点M1、M2,且|z1+z2|=|z1-z2|,线段M1M2的中点M对应的复数为4+3i,则|z1|2+|z2|2等于(  )
A.10B.25C.100D.200

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:
①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2$\sqrt{2}$;
②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于$\frac{7\sqrt{3}}{3}$;
③在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=$\frac{7}{2}$;
④设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则$\frac{b}{c}$+$\frac{c}{b}$的取值范围是[2,$\sqrt{5}$]
其中正确说法的序号是①②③④(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的$\sqrt{3}$倍,其上一点到焦点的最短距离为$\sqrt{3}-\sqrt{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=kx+b与圆$O:{x^2}+{y^2}=\frac{3}{4}$相切,且交椭圆C于A,B两点,求当△AOB的面积最大时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将“丹、东、市”填入如图所示的4×4小方格内,每格内只填入一个汉字,且任意两个汉字既不同行也不同列,则不同的填写方法有(  )
A.288B.144C.576D.96

查看答案和解析>>

同步练习册答案