分析 通过设P(m,n)(不妨令m、n均为正数),利用△APF为等腰三角形及直角三角形,求出n,m,通过抛物线的定义求解即可.
解答
解:由题可知:抛物线y2=8x的焦点为:F(2,0),
抛物线y2=8x的准线方程为:x=-2,
不妨设P(m,n)(m、n均为正数),则8m=n2,
∴|PA|=2+m,|FA|=$\sqrt{{4}^{2}+{n}^{2}}$,
由抛物线的定义可知:|PF|=|PA|=2+m,
∴△APF为等腰三角形,
又∠AFx=$\frac{2π}{3}$,∴2p=|FA|cos60°,|FA|=8.
即$\sqrt{{4}^{2}+{n}^{2}}$=8,n2=48.
得:8m=48,
解得:m=6,|PF|=2+6=8,
故答案为:8.
点评 本题以抛物线为载体,考查求线段长度,考查抛物线的简单性质的应用,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
| 高一年级 | 7 | 7.5 | 8 | 8.5 | 9 | |||
| 高二年级 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
| 高三年级 | 6 | 6.5 | 7 | 8.5 | 11 | 13.5 | 17 | 18.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -3 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | K的最小值为1 | B. | K的最小值为2 | C. | K的最大值为1 | D. | K的最大值为2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com