精英家教网 > 高中数学 > 题目详情
17.$f(x)=asinx-b{log_3}(\sqrt{{x^2}+1}-x)+1$(a,b∈R),若f(lglog310)=5,则f(lglg3)的值是(  )
A.-5B.-3C.3D.5

分析 设lglog310=m,则lglg3=-lglog310=-m.由f(lglog310)=5,得到asinm+b$lo{g}_{3}(\sqrt{{m}^{2}+1}-m)$=4,由此能求出结果.

解答 解:∵$f(x)=asinx-b{log_3}(\sqrt{{x^2}+1}-x)+1$(a,b∈R),
若f(lglog310)=5,∴设lglog310=m,
则lglg3=-lglog310=-m.
∵f(lglog310)=5,
$f(x)=asinx-b{log_3}(\sqrt{{x^2}+1}-x)+1$(a,b∈R),
∴f(m)=asinm+b$lo{g}_{3}(\sqrt{{m}^{2}+1}-m)+1$=5,
∴asinm+b$lo{g}_{3}(\sqrt{{m}^{2}+1}-m)$=4,
∴f(lglg3)=f(-m)=-(asinm+b$lo{g}_{3}(\sqrt{{m}^{2}+1}-m)$)+1=-4+1=-3.
故选:B.

点评 本题考查函数值求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|2x-1<0},B={x|0≤x≤1},那么A∩B等于(  )
A.{x|x≥0}B.{x|x≤1}C.{x|0<x<$\frac{1}{2}$}D.{x|0≤x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinx+lnx-kx(k>0)
(1)若函数f(x)在$(0,\frac{π}{2}]$单调递增,求k的取值范围
(2)设g(x)=sinx(x>0),若y=g(x)的图象在y=f(x)的图象上方,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,梯形ABCD的对角线交于点O,则下列四个结论:
①△AOB∽△COD;
②△AOD∽△ACB;
③S△DOC:S△AOD=CD:AB;
④S△AOD=S△BOC
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.
(1)若$A=\frac{π}{6}$,求B;
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC的顶点A(0,-4)、B(0,4),且4(sinB-sinA)=3sinC,则顶点C的轨迹方程是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1(x>3)B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1(x<-7)C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1(y>3)D.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1(y<-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x-1≤1},集合B={y|y=2x,x<1},则A∩(∁UB)=(  )
A.{x|0<x<2}B.C.{0,2}D.{x|x≤0或x=2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的倾斜角为$\frac{2π}{3}$,求线段PF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的$\sqrt{3}$倍,其上一点到焦点的最短距离为$\sqrt{3}-\sqrt{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=kx+b与圆$O:{x^2}+{y^2}=\frac{3}{4}$相切,且交椭圆C于A,B两点,求当△AOB的面积最大时,直线l的方程.

查看答案和解析>>

同步练习册答案