精英家教网 > 高中数学 > 题目详情
8.已知{an}中,a1=1,nan+1=(n+1)an,则数列{an}的通项公式是(  )
A.an=$\frac{1}{n}$B.an=2n-1C.an=nD.an=$\frac{n+1}{2n}$

分析 利用数列的递推关系式,通过累积法,求解数列的通项公式.

解答 解:由nan+1=(n+1)an,可得:$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n}$,又∵a1=1,
∴${a}_{n}=\frac{{a}_{2}}{{a}_{1}}•\frac{{a}_{3}}{{a}_{2}}…\frac{{a}_{n}}{{a}_{n-1}}•{a}_{1}$=$\frac{2}{1}×\frac{3}{2}×…×\frac{n}{n-1}×1$=n.
∴an=n,
故选:C.

点评 本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{3}{5}$,且短轴长为8
(1)求椭圆C的标准方程;
(2)设F1、F2分别为椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同两点M,N,若△F1MN的内切圆周长为π,M(x1,y1)、N(x2,y2),求|y1-y2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ x+y≤a\end{array}\right.({a>0})$,若z=x+ay的最大值为2,则$m+\frac{a^2}{{m-\sqrt{2}}}({m>\sqrt{2}})$的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2b,又sinA,sinC,sinB成等差数列.
(1)求cosA的值;
(2)若${S_{△ABC}}=\frac{{8\sqrt{15}}}{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z1、z2分别对应复平面内的点M1、M2,且|z1+z2|=|z1-z2|,线段M1M2的中点M对应的复数为4+3i,则|z1|2+|z2|2等于(  )
A.10B.25C.100D.200

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(3x+2)15展开式中最大系数是第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集为R,集合A={y|y=3x,x≤1},B={x|x2-6x+8≤0},则A∪B=(0,4],A∩∁RB=(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},-2≤x≤0}\\{x+1,0<x≤2}\end{array}\right.$,则${∫}_{-2}^{2}$f(x)dx的值为$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若二次函数y=x2+2x+(m+3)有两个不同的零点,则m的取值范围是(  )
A.(-∞,-2)B.(-∞,-2]C.(-∞,4)D.(4,+∞)

查看答案和解析>>

同步练习册答案