分析 利用二项式(3x+2)15展开式的通项公式Tr+1,设第r+1项的系数最大,得出不等式组$\left\{\begin{array}{l}{{C}_{15}^{r}{•2}^{r}{•3}^{15-r}{≥C}_{15}^{r+1}{•2}^{r+1}{•3}^{14-r}}\\{{C}_{15}^{r}{•2}^{r}{•2}^{15-r}{≥C}_{15}^{r-1}{•2}^{r-1}{•3}^{16-r}}\end{array}\right.$,求出r的值即可.
解答 解:二项式(3x+2)15展开式的通项公式为
Tr+1=${C}_{15}^{r}$•2r•315-r•x15-r,
∴第r+1项的系数为${C}_{15}^{r}$•2r•315-r;
设第r+1项的系数最大,则有
$\left\{\begin{array}{l}{{C}_{15}^{r}{•2}^{r}{•3}^{15-r}{≥C}_{15}^{r+1}{•2}^{r+1}{•3}^{14-r}}\\{{C}_{15}^{r}{•2}^{r}{•2}^{15-r}{≥C}_{15}^{r-1}{•2}^{r-1}{•3}^{16-r}}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{15!•3}{r!•(15-r)!}≥\frac{15!•2}{(r+1)!•(14-r)!}}\\{\frac{15!•2}{r!•(15-r)!}≥\frac{15!•3}{(r-1)!•(16-r)!}}\end{array}\right.$,
化简得$\left\{\begin{array}{l}{\frac{3}{15-r}≥\frac{2}{r+1}}\\{\frac{2}{r}≥\frac{3}{16-r}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{r≥\frac{27}{5}}\\{r≤\frac{32}{5}}\end{array}\right.$,
即$\frac{27}{5}$≤r≤$\frac{32}{5}$;
又r∈N,∴得r=6,
∴(3x+2)15展开式中最大系数是第7项.
故答案为:第7项.
点评 本题考查了二项式定理与二项展开式的通项公式应用问题,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在x=1处取到极小值 | B. | f(x)在x=1处取到极大值 | ||
| C. | f(x)在x=-1处取到极小值 | D. | f(x)在x=-1处取到极大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=$\frac{1}{n}$ | B. | an=2n-1 | C. | an=n | D. | an=$\frac{n+1}{2n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2a)<f(2)<f(log2a) | B. | $f(2)<f({log_2}a)<f({2^a})$ | C. | $f({log_2}a)<f({2^a})<f(2)$ | D. | $f({log_2}a)<f(2)<f({2^a})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com