分析 由题意可得,a1•a2…an=log23•log34•…•logn+1(n+2)=$\frac{lg3}{lg2}$×$\frac{lg4}{lg3}$×$\frac{lg5}{lg4}$×…×$\frac{lg(n+2)}{lg(n+1)}$=log2(n+2),若使log2(n+2)为整数,则n+2=2k,在(1,2010]内的所有整数可求,进而利用分组求和及等比数列的求和公式可求.
解答 解:∵an=logn+1(n+2)
∴a1•a2…an=log23•log34•…•logn+1(n+2)
=$\frac{lg3}{lg2}$×$\frac{lg4}{lg3}$×$\frac{lg5}{lg4}$×…×$\frac{lg(n+2)}{lg(n+1)}$=log2(n+2),
若使log2(n+2)为整数,则n+2=2k
在(1,2010]内的所有整数分别为:22-2,23-2,…,210-2
∴所求的数的和为22-2+23-2+…+210-2=$\frac{4(1-{2}^{9})}{1-2}$-2×9=2026
故答案为:2026.
点评 本题以新定义“优数”为切入点,主要考查了对数的换底公式及对数的运算性质的应用,属于中档试题.
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{4}{3}}]$ | B. | $({\frac{4}{3},\frac{7}{3}}]$ | C. | $({\frac{7}{3},\frac{10}{3}}]$ | D. | $({\frac{10}{3},\frac{13}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{4}$,-$\frac{1}{6}$) | B. | (-$\frac{1}{2}$,-$\frac{1}{4}$] | C. | (-$\frac{1}{6}$,0] | D. | (-$\frac{1}{2}$,-$\frac{1}{6}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{{x}^{2}}$ | B. | y=$\frac{{x}^{2}}{x}$ | ||
| C. | y=($\sqrt{x}$)2 | D. | y=logaax(a>0且a≠1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | -2或1 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com