精英家教网 > 高中数学 > 题目详情
3.已知△ABC中,a=1,b=2,C=$\frac{2π}{3}$,则边c的长度为$\sqrt{7}$.

分析 直接利用余弦定理,列出方程求解即可.

解答 解:△ABC中,a=1,b=2,C=$\frac{2π}{3}$,则边c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=$\sqrt{1+4+2×1×2×\frac{1}{2}}$=$\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题考查余弦定理的应用,三角形的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|1<x<2},B={x|x2≥2},则∁R(A∪B)等于(  )
A.(-$\sqrt{2}$,2)B.[-$\sqrt{2}$,1)C.($\sqrt{2}$,2)D.(-$\sqrt{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,A=$\frac{π}{3}$,BC=3,则AB+AC的长可表示为(  )
A.4$\sqrt{3}$sin(B+$\frac{π}{3}$)B.6sin(B+$\frac{π}{3}$)C.4$\sqrt{3}$sin(B+$\frac{π}{6}$)D.6sin(B+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元. 
(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知fn(x)=$\sum_{k=0}^{n}$C${\;}_{n}^{k}$xk(n∈N*).
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x4项的系数;
(2)证明:C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+nC${\;}_{m+n}^{n-1}$=[$\frac{(m+2)n+1}{m+3}$]C${\;}_{m+n+1}^{m+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=axex,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x+b.
(1)求实数a,b的值;
(2)设函数g(x)=f(x)-x2-2x,求函数g(x)的单调区间;
(3)在(2)的条件下,是否存在实数k,使得对于任意的x∈(-∞,0),都有g(x)≤kx恒成立?若存在,求出实数k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心在原点,一个焦点为F(0,$\sqrt{3}$),且椭圆C经过点P($\frac{1}{2}$,$\sqrt{3}$).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,1)的斜率不为0的直线与椭圆交于A、B两点,A关于y轴的对称点为A′,求证:A′B恒过y轴上的一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=16x,焦点为F,直线l:x=-1,点A∈l,线段AF与抛物线C的交点为B,若|FA|=5|FB|,则|FA|=(  )
A.$6\sqrt{2}$B.35C.$4\sqrt{3}$D.40

查看答案和解析>>

同步练习册答案