精英家教网 > 高中数学 > 题目详情
8.已知fn(x)=$\sum_{k=0}^{n}$C${\;}_{n}^{k}$xk(n∈N*).
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x4项的系数;
(2)证明:C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+nC${\;}_{m+n}^{n-1}$=[$\frac{(m+2)n+1}{m+3}$]C${\;}_{m+n+1}^{m+2}$.

分析 (1)利用fn(x)=(1+x)n,即可求出g(x)中含x4项的系数;
(2)令h(x)=(1+x)m+1+2(1+x)m+2+3(1+x)m+3+…+n•(1+x)m+n,利用错位相减法,即可证明结论.

解答 (1)解:fn(x)=$\sum_{k=0}^{n}$C${\;}_{n}^{k}$xk(n∈N*)=${C}_{n}^{0}$•x0+${C}_{n}^{1}$•x+${C}_{n}^{2}$•x2+${C}_{n}^{n}$•xn=(1+x)n
g(x)=f4(x)+2f5(x)+3f6(x)=(1+x)4+2(1+x)5+3(1+x)6
故g(x)中含x4项的系数为${C}_{4}^{4}$+2${C}_{5}^{4}$+3${C}_{6}^{4}$=56.
(2)证明:∵C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+nC${\;}_{m+n}^{n-1}$=${C}_{m+1}^{m+1}$+2${C}_{m+2}^{m+1}$+3${C}_{m+3}^{m+1}$+…+n${C}_{m+n}^{m+1}$,
令h(x)=(1+x)m+1+2(1+x)m+2+3(1+x)m+3+…+n•(1+x)m+n. 
则函数h(x)中含xm+1项的系数为 C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+n${C}_{m+n}^{m+1}$,…(5分)
同乘1+x,由错位相减法得:-xh(x)=(1+x)m+1+(1+x)m+2+(1+x)m+3+…+(1+x)m+n-n•(1+x)m+n+1=$\frac{(1+x)^{m+1}[1-(1+x)^{n}]}{1-(1+x)}$-n•(1+x)m+n+1
∴x2h(x)=(1+x)m+1-(1+x)m+n+1+n•(1+x)m+n+1
h(x)中含xm+1项的系数,即是等式左边含xm+3项的系数,等式右边含xm+3项的系数为-${C}_{m+n+1}^{m+3}$+n${C}_{m+n+1}^{m+2}$,…(7分)
-${C}_{m+n+1}^{m+3}$+n${C}_{m+n+1}^{m+2}$=-$\frac{(m+n+1)!}{(m+3)!(n-2)!}$+n${C}_{m+n+1}^{m+2}$=-$\frac{n-1}{m+3}$${C}_{m+n+1}^{m+2}$+n${C}_{m+n+1}^{m+2}$=[$\frac{(m+2)n+1}{m+3}$]C${\;}_{m+n+1}^{m+2}$,
所以C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+nC${\;}_{m+n}^{n-1}$=[$\frac{(m+2)n+1}{m+3}$]C${\;}_{m+n+1}^{m+2}$.     …(10分)

点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.
(Ⅰ)求实数a的值;
(Ⅱ)若存在k∈Z,使得f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z满足(3+i)z=10i(其中i为虚数单位),则复数z的共轭复数是1-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,a=1,b=2,C=$\frac{2π}{3}$,则边c的长度为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥D-ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F
(Ⅰ)求证:平面ABD⊥平面DEF
(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y2=2px(p>0)上一点M(2,m)到焦点的距离为3,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),且过点($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$).过F作直线l与椭圆C交于不同的两点A,B,设$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],T(2,0)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求|$\overrightarrow{TA}$+$\overrightarrow{TB}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其离心率与双曲线$\frac{x^2}{3}-{y^2}$=1的离心率互为倒数,而直线x+y=$\sqrt{3}$过椭圆C的一个焦点.
(I)求椭圆C的方程;
(Ⅱ)如图,以椭圆C的左顶点T为圆心作圆T,设圆T与椭圆C交于两点M,N,求$\overrightarrow{{T}{M}}•\overrightarrow{{T}{N}}$的最小值,并求出此时圆T的方程.

查看答案和解析>>

同步练习册答案