精英家教网 > 高中数学 > 题目详情
14.在△ABC中,A=$\frac{π}{3}$,BC=3,则AB+AC的长可表示为(  )
A.4$\sqrt{3}$sin(B+$\frac{π}{3}$)B.6sin(B+$\frac{π}{3}$)C.4$\sqrt{3}$sin(B+$\frac{π}{6}$)D.6sin(B+$\frac{π}{6}$)

分析 由正弦定理可得:AB=2$\sqrt{3}$sinC=2$\sqrt{3}$sin($\frac{2π}{3}$-B),AC=2$\sqrt{3}$sinB,利用三角函数恒等变换的应用化简即可得解.

解答 解:在△ABC中,∵A=$\frac{π}{3}$,BC=3,∴C=$\frac{2π}{3}$-B,
∴由正弦定理得:$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}$=$\frac{3}{sin\frac{π}{3}}$=2$\sqrt{3}$,整理得:AB=2$\sqrt{3}$sinC=2$\sqrt{3}$sin($\frac{2π}{3}$-B),AC=2$\sqrt{3}$sinB,
∴AB+AC=2$\sqrt{3}$sin($\frac{2π}{3}$-B)+2$\sqrt{3}$sinB=2$\sqrt{3}$×[sin($\frac{2π}{3}$-B)+sinB]=2$\sqrt{3}$×($\frac{\sqrt{3}}{2}$cosB+$\frac{3}{2}$sinB)=6sin(B+$\frac{π}{6}$).
故选:D.

点评 本题主要考查了正弦定理在解三角形中的应用,在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.而余弦定理在使用时一般要求两边有平方和的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=$\sqrt{3}$x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(3x-y)(x+2y)5的展开式中,x4y2的系数为(  )
A.110B.120C.130D.150

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于x的一元二次方程x2+2mx+5m-6=0,若m是从区间[0,5]任取的一个数,则上述方程有实根的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点M,N分别在曲线C1:(x-$\frac{1}{2}$)2+(y-2)2=1和曲线C2:y2=x上运动,那么|MN|的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.
(Ⅰ)求实数a的值;
(Ⅱ)若存在k∈Z,使得f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知复数z满足(1+i)z=1(为虚数单位),则z的模为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,a=1,b=2,C=$\frac{2π}{3}$,则边c的长度为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x1、x2分别是关于x的方程x2+mx+m2-m=0的两个不相等的实数根,那么过两点A(x1,x12),B(x2,x22)的直线与圆(x-1)2+(y+1)2=1的位置关系是(  )
A.相离B.相切C.相交D.随m的变化而变化

查看答案和解析>>

同步练习册答案