| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
分析 根据平面向量数量积的定义,列出方程求出λ的值.
解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,
且|$\overrightarrow{a}$|=m,|$\overrightarrow{b}$|=2m(m≠0),$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-λ$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-λ$\overrightarrow{a}•\overrightarrow{b}$=0,
即m2-λm×2m×cos120°=0,
解得λ=-1.
故选:B.
点评 本题考查了平面向量的数量积与应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+y2=4 | B. | (x-2)2+y2=4 | C. | x2+(y-1)2=4 | D. | (x-1)2+(y-4)2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{26}}}{26}$ | B. | $\frac{{\sqrt{26}}}{12}$ | C. | $\frac{{3\sqrt{26}}}{26}$ | D. | $\frac{{2\sqrt{26}}}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{7}$ | B. | $-\frac{8}{7}$ | C. | $\frac{10}{7}$ | D. | $-\frac{10}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{15}$ | B. | $\frac{4}{15}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com