精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且,|$\overrightarrow{a}$|=m,|$\overrightarrow{b}$|=2m(m≠0),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),则λ=(  )
A.1B.-1C.2D.-2

分析 根据平面向量数量积的定义,列出方程求出λ的值.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,
且|$\overrightarrow{a}$|=m,|$\overrightarrow{b}$|=2m(m≠0),$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-λ$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-λ$\overrightarrow{a}•\overrightarrow{b}$=0,
即m2-λm×2m×cos120°=0,
解得λ=-1.
故选:B.

点评 本题考查了平面向量的数量积与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=a(x-1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(-x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:$|f({x^2})+x|≤\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且满足an+2Sn•Sn-1=0(n≥2),a1=$\frac{1}{2}$.
(1)求证:{$\frac{1}{Sn}$}是等差数列;
(2)若${b_n}=\frac{2^n}{s_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆心在x轴上,半径为2,且过点(1,2)的圆的方程为(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.x2+(y-1)2=4D.(x-1)2+(y-4)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow{OA}=(1,1,0)$,$\overrightarrow{OB}=(4,1,0)$,$\overrightarrow{OC}=(4,5,-1)$,则向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角的余弦值为(  )
A.$\frac{{\sqrt{26}}}{26}$B.$\frac{{\sqrt{26}}}{12}$C.$\frac{{3\sqrt{26}}}{26}$D.$\frac{{2\sqrt{26}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)过点A(1,m),B为抛物线的准线与x轴的交点,若|AB|=2$\sqrt{2}$.
(1)求抛物线的方程;
(2)在抛物线上任取一点P(x0,y0),过点P作两条直线分别与抛物线另外相交于点M和点N,连接MN,若直线PM,PN,MN的斜率都存在且不为零,设其斜率分别为k1,k2,k3,求证:$\frac{1}{k_1}+\frac{1}{k_2}-\frac{1}{k_3}=\frac{y_0}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知θ是第一象限角,且$cosθ=\frac{{\sqrt{10}}}{10}$,则$\frac{cos2θ}{{sin2θ+co{s^2}θ}}$的值是(  )
A.$\frac{8}{7}$B.$-\frac{8}{7}$C.$\frac{10}{7}$D.$-\frac{10}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数 y=2sin(2x+$\frac{π}{3}$)的图象,可由函数y=sinx 的图象怎样变换得到?并画出图形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的半焦距为c(c>0),左焦点为F,右顶点为A,抛物线${y^2}=\frac{15}{8}(a+c)x$与椭圆交于M,N两点,若四边形AMFN是菱形,则椭圆的离心率是(  )
A.$\frac{8}{15}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案