| A. | $\frac{{\sqrt{26}}}{26}$ | B. | $\frac{{\sqrt{26}}}{12}$ | C. | $\frac{{3\sqrt{26}}}{26}$ | D. | $\frac{{2\sqrt{26}}}{13}$ |
分析 先求得$\overrightarrow{AB}$、$\overrightarrow{AC}$的坐标,再利用两个向量的数量积的定义,两个向量的夹角公式,求得向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角的余弦值.
解答 解:设向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角为θ,∵已知$\overrightarrow{OA}=(1,1,0)$,$\overrightarrow{OB}=(4,1,0)$,$\overrightarrow{OC}=(4,5,-1)$,
∴$\overrightarrow{AB}$=(3,0,0),$\overrightarrow{AC}$=(3,4,-1),
∴cosθ=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|•|\overrightarrow{AC}|}$=$\frac{3•3+0+0}{3•\sqrt{9+16+1}}$=$\frac{9}{3\sqrt{26}}$=$\frac{3\sqrt{26}}{26}$,
故选:C.
点评 本题主要考查两个向量的数量积的定义,两个向量的夹角公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2+x-1≥0 | B. | $?{x_0}∈R,x_0^2+{x_0}-1>0$ | ||
| C. | $?{x_0}∉R,x_0^2+{x_0}-1≥0$ | D. | ?x∉R,x2+x-1>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{12}$,$\frac{π}{4}$] | B. | [$\frac{π}{6}$,$\frac{5π}{12}$) | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | ($\frac{π}{6}$,$\frac{π}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何体 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.481 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com