精英家教网 > 高中数学 > 题目详情
角α的终边过点P(-
4
5
3
5
),则cosα的值为(  )
A、-
3
4
B、-
4
3
C、
3
5
D、-
4
5
考点:任意角的三角函数的定义
专题:计算题,三角函数的求值
分析:利用任意角的三角函数的定义即可求得答案.
解答: 解:∵角α的终边过点P(-
4
5
3
5
),
∴x=-
4
5
,r=1
∴cosα=-
4
5

故选:D.
点评:本题考查任意角的三角函数的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={x|x2≤4},N={x|log2x≤1},则M∩N=(  )
A、[-2,2]
B、(-∞,-2]∪[2,+∞)
C、(0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线经过A(2
3
,9)、B(4
3
,15)两点,则直线AB的斜率是(  )
A、
3
B、
3
3
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

log48=(  )
A、
1
2
B、
3
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式(x-4a)(x+2a)<0(a>0)的解集为(x1,x2),且x2-x1=15,则a=(  )
A、
5
2
B、
7
2
C、
15
4
D、
15
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(π+α)=
1
10
,则
sec(-α)+sin(-α-90°)
csc(540°-α)-cos(-α-270°)
的值等于(  )
A、-
1
3
B、±
1
27
C、
1
3
D、-
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x-2sin2x+a(a∈R)
(1)若x∈R,求f(x)的单调递增区间;
(2)若x∈[0,
π
2
]时,f(x)的最大值为4,求a的值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Acos(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的部分图象如图,
(1)求f(x)的解析式,并求单调递增区间
(2)若m(x)=f(x+
π
12
),n(x)=sinx,问是否存在x0∈(
π
6
π
4
),使得m(x0),n(x0),m(x0)×n(x0)按某种顺序排成等差数列,若存在,试确定x0的个数,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求A∩B,A∪B,(∁UA)∩(∁UB),A∩(∁UB),(∁UA)∪B.

查看答案和解析>>

同步练习册答案