精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin2x-2sin2x+a(a∈R)
(1)若x∈R,求f(x)的单调递增区间;
(2)若x∈[0,
π
2
]时,f(x)的最大值为4,求a的值,并指出此时x的值.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)利用三角函数中的恒等变换可求得f(x)=2sin(2x+
π
6
)-1+a,利用正弦函数的单调性即可求得f(x)的单调递增区间;
(2)x∈[0,
π
2
]⇒
π
6
≤2x+
π
6
6
,于是可求f(x)的最大值为4时a的值及此时x的值.
解答: 解:(1)f(x)=
3
sin2x+cos2x-1+a=2sin(2x+
π
6
)-1+a

解不等式2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
kπ-
π
3
≤x≤kπ+
π
6
,(k∈Z)

∴f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
](k∈Z)

(2)∵x∈[0,
π
2
]
,∴
π
6
≤2x+
π
6
6

∴当2x+
π
6
=
π
2
x=
π
6
时,f(x)有最大值f(x)max=1+a,
∵1+a=4,∴a=2,此时x=
π
6
点评:本题考查三角函数中的恒等变换应用,考查正弦函数的单调性与最值,考查化归思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c是空间的三条直线,α、β是空间的两个平面,则下列命题错误的是(  )
A、当c⊥α时,若α∥β,则c⊥β
B、当α⊥β时,若b?α,则b⊥β
C、当c?α,且b?α时,若c∥b,则c∥α
D、当a在α内的射影是c,且b?α时,若b⊥a,则b⊥c

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数a,b,定义min{a,b}=
a,a≤b
b,a>b
.定义在R上的偶函数f(x)满足f(x-4)=f(x),且当0≤x≤2时,f(x)=min{2x-1,2-x}.若方程f(x)-mx=0恰有4个零点,则m的取值范围是(  )
A、(-
1
3
1
3
B、(-
1
3
,-
1
5
C、(
1
5
1
3
D、(-
1
3
,-
1
5
)∪(
1
5
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

角α的终边过点P(-
4
5
3
5
),则cosα的值为(  )
A、-
3
4
B、-
4
3
C、
3
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体A-BCD的棱长为a,且a∈{x|x2-6x+5≤0},则
AB
•(
AC
+
AD
)≥4的概率为(  )
A、
1
4
B、
1
2
C、
2
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=
1
3
,f(
c
2
)=-
1
4
,且C为锐角,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+b
ax2+1
是定义在(-1,1)上的奇函数,且f(
1
3
)=
3
10

(1)求函数f(x)的解析式;
(2)求证:f(x)在(-1,1)上为增函数;
(3)解不等式:f(2t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),设函数f(x)=
m
n

(1)求f(x)的最小正周期与单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C所对应的边,若f(A)=4,b=1,得面积为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin2x+sin2x+3cos2x(x∈R).
(1)将函数写成f(x)=Asin(ωx+φ)+k(A>0,ω>0,|ϕ|<
π
2
)的形式;
(2)在直角坐标系中,用“五点”法作出函数f(x)在一个周期内的大致图象;
(3)求f(x)的周期、最大值和最小值及当函数取最大值和最小值时相应的x的值的集合.

查看答案和解析>>

同步练习册答案