| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,求出g(x),再利用g′(x)是g(x)的导函数,且${g^'}({\frac{π}{6}})=0$,建立关系求解w的最小值.
解答 解:由题意:y=coswx(w>0)向左平移$\frac{π}{3}$个单位,得到:y=cosw(x+$\frac{π}{3}$)=cos(wx+$\frac{wπ}{3}$)=g(x);
那么:g′(x)=-sin(wx+$\frac{wπ}{3}$)•(wx+$\frac{wπ}{3}$)′=-w•sin(wx+$\frac{wπ}{3}$);
∵${g^'}({\frac{π}{6}})=0$,可得:w×$\frac{π}{6}$+$\frac{wπ}{3}$=kπ,k∈Z,解得:w=2k;
w>0.
当k=1时,w=2,
所以w的最小值为2.
故选A.
点评 本题考查了三角函数的平移变换规律,性质利用以及三角函数的复合导数求法计算.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | (-1,1) | C. | (-1,0] | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-$\frac{1}{x}$ | B. | y=log2(x-1) | ||
| C. | y=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{-{3}^{-x},x<0}\end{array}\right.$ | D. | y=ln(x+$\sqrt{{x}^{2}+1}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{7}{20}$ | C. | $\frac{9}{25}$ | D. | $\frac{11}{25}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com