精英家教网 > 高中数学 > 题目详情
12.已知f(x)=ax5+bx-$\frac{c}{x}$+2,f(2)=4,则f(-2)=0.

分析 由已知得f(2)=32a+2b-$\frac{c}{2}$+2=4,从而32a+2b-$\frac{c}{2}$=2,由此能求出f(-2)的值.

解答 解:∵f(x)=ax5+bx-$\frac{c}{x}$+2,
f(2)=4,
∴f(2)=32a+2b-$\frac{c}{2}$+2=4,
∴32a+2b-$\frac{c}{2}$=2,
∴f(-2)=-32a-2b+$\frac{c}{2}$+2=-2+2=0.
故答案为:0.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.用秦九韶算法计算函数f(x)=2x5+3x4+2x3-4x+5当x=2时的函数值为(  )
A.100B.125C.60D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$<α<π,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=log2$\frac{x}{4}•{log_2}\frac{x}{2}+\frac{1}{4}$最小值0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以下四个关于圆锥曲线的命题中:其中真命题为④(写出所有真命题的序号)
①A、B为不同的两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.
②平面内与两个定点F1,F2的距离和等于常数的点的轨迹是椭圆.
③平面内与一个定点F和一条定直线l距离相等的点的轨迹叫做抛物线.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$cos(\frac{π}{4}+x)=\frac{1}{4}$,则sin2x的值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AC⊥平面α于C,BG⊥平面α于G,AB∥平面α,CD?平面α,M、N分别为AC、BD的中点,若AB=4,AC=2,CD=4,BD=6
(1)求证:CG⊥平面ACD;
(2)求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数y=logax(0<a<1)在[2,4]上的最大值与最小值之差为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的值6.

查看答案和解析>>

同步练习册答案