精英家教网 > 高中数学 > 题目详情
将函数y=sin2x的图象向左平移
π
4
个单位,再向上平移1个单位,所得图象的函数解析式是(  )
A、y=cos2x
B、y=1+sin(2x+
π
4
)
C、y=2cos2x
D、y=2sin2x
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的求值,三角函数的图像与性质
分析:首先根据函数图象的平移变换求出函数的解析式,进一步利用函数关系式的恒等变形求出结果.
解答: 解:函数y=sin2x的图象向左平移
π
4
个单位,
得到:f(x)=sin[2(x+
π
4
)]=cos2x
再把函数的图象向上平移1个单位,
得到:g(x)=cos2x+1=2cos2x
故选:C
点评:本题考查的知识要点:函数图象的平移变换,函数关系式的恒等变换,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示是一个四棱锥的三视图,则该几何体的体积为(  )
 
A、4
B、
4
3
C、12
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D在BC边上,且
CD
=2
DB
CD
=r
AB
+s
AC
,则r+s=(  )
A、
2
3
B、
4
3
C、1
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
1
2
x+θ)-
3
cos(
1
2
x+θ)(|θ|<
π
2
)的图象关于y中对称,则y=f(x)在下列哪个区间上是减函数(  )
A、(0,
π
2
B、(
π
2
,π)
C、(-
π
2
,-
π
4
D、(
2
,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若PQ是圆x2+y2=9的弦,PQ的中点是(1,2),求弦PQ的长度;
(2)已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列哪组中的两个函数是相等函数(  )
A、y=x,y=
5x5
B、y=
x-1
x+1
,y=
x2-1
C、y=1,y=
x
x
D、y=|x|,y=(
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-1,2)
b
=(2,3)
,若
m
a
+
b
n
=
a
-
b
的夹角为钝角,则实数λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-1(a∈R是常数).
(1)设a=-3,x=x1、x=x2是函数y=f(x)的极值点,试证明曲线y=f(x)关于点M(
x1+x2
2
,f(
x1+x2
2
))
对称;
(2)是否存在常数a,使得?x∈[-1,5],|f(x)|≤33恒成立?若存在,求常数a的值或取值范围;若不存在,请说明理由.
(注:曲线y=f(x)关于点M对称是指,对于曲线y=f(x)上任意一点P,若点P关于M的对称点为Q,则Q在曲线y=f(x)上.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)在三角形ABC中,求a=2,c=
3
,cos
B
2
=
2
5
5
角形ABC的面积S;
(Ⅱ)设函数f(x)=
3
2
cosx+
1
2
sinx+1,x∈[-
π
3
6
]时,求f(x)的值域.

查看答案和解析>>

同步练习册答案