精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=Asin(ωx+φ)的部分图象如图,则f($\frac{7π}{4}$)=(  )
A.-$\sqrt{3}$B.-1C.$\sqrt{3}$D.1

分析 由图象可得A,通过 $\frac{3T}{4}$,可得ω,代入点( $\frac{5π}{12}$,2)可得φ的值,进而可得函数解析式,代入$\frac{7π}{4}$可得答案.

解答 解:由图象可得A=2,$\frac{3T}{4}$=$\frac{5π}{12}$-(-$\frac{π}{3}$)=$\frac{3π}{4}$,解得T=π,∴ω=2,
故函数的解析式为:f(x)=2sin(2x+φ),代入点( $\frac{5π}{12}$,2)可得
2=2sin($\frac{5π}{12}×2$+φ),解得φ=$-\frac{π}{3}$,
故函数的解析式为:f(x)=2sin(2x$-\frac{π}{3}$),
故f($\frac{7π}{4}$)=2sin($2×\frac{7π}{4}$$-\frac{π}{3}$)=-2cos$\frac{π}{3}$=-1,
故选:B.

点评 本题考查由图象确定函数f(x)=Asin(ωx+ϕ)的解析式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$+2)($\sqrt{1-{x}^{2}}$+1)的值域是[$\sqrt{2}$+2,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有下列说法:
①在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{CA}$<0,则△ABC是钝角三角形;
②在△ABC中$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,若|$\overrightarrow{a}$|=|$\overrightarrow{b}$-$\overrightarrow{c}$|,则△ABC是直角三角形;
③在△ABC中,若tan $\frac{A+B}{2}$=sin C,则sin2A+sin2B=1;
④在△ABC中,E,F分别是AC,AB的中点,且3AB=2AC,若$\frac{BE}{CF}$<t恒成立,则t的最小值为$\frac{7}{8}$.
其中正确说法的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$,$\overrightarrow b$均为单位向量,它们的夹角为60°,则|2$\overrightarrow a$-3$\overrightarrow b}$|等于(  )
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)030-30
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向右平行移动 $\frac{π}{3}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某射击运动员,每次击中目标的概率是0.8,则该射击运动员射击4次至少击中3次的概率为(  )
A.0.85B.0.75C.0.8D.0.8192

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则f(x)的最小值为(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α∈[$\frac{π}{4}$,π],β∈[π,$\frac{3π}{2}$],sin2α=$\frac{\sqrt{5}}{5}$,sin(β-α)=$\frac{\sqrt{10}}{10}$.
(1)求cos2α的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a为实数,函数f(x)=x2-|x2-ax-2|在区间(-∞,-1)和(2,+∞)上单调递增,则a的取值范围为(  )
A.[1,8]B.[3,8]C.[1,3]D.[-1,8]

查看答案和解析>>

同步练习册答案