精英家教网 > 高中数学 > 题目详情
11.已知某射击运动员,每次击中目标的概率是0.8,则该射击运动员射击4次至少击中3次的概率为(  )
A.0.85B.0.75C.0.8D.0.8192

分析 利用相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k的概率公式,求得结果.

解答 解:某射击运动员,每次击中目标的概率是0.8,则该射击运动员射击4次至少击中3次的概率为:
${C}_{4}^{3}$•0.83•0.2+${C}_{4}^{4}$•0.84=0.4096+0.4096=0.8192,
故选:D.

点评 本题考查相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k次的概率公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-ax+1(a∈R).
(1)当a=1时,求函数f(x)的极大值;
(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;
(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:$\frac{{x}_{1}-{x}_{2}}{h({x}_{1})-h({x}_{2})}$>$\sqrt{{x}_{1}{x}_{2}}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin(-480°)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P,M,N在△ABC所在平面内,且|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=|$\overrightarrow{PC}$|,$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\overrightarrow{MB}$•$\overrightarrow{MC}$=$\overrightarrow{MC}$•$\overrightarrow{MA}$,且$\overrightarrow{NA}$+$\overrightarrow{NB}$+$\overrightarrow{NC}$=$\overrightarrow{0}$,则点P,M,N依次是△ABC的(  )
A.重心 垂心 内心B.外心 垂心 重心C.重心 外心 内心D.外心 重心 内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=Asin(ωx+φ)的部分图象如图,则f($\frac{7π}{4}$)=(  )
A.-$\sqrt{3}$B.-1C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平行四边形ABCD中,AP⊥BD于P,AP=3,则$\overrightarrow{AP}$•$\overrightarrow{AC}$的值为(  )
A.3B.6C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.根据下列条件,求圆方程:
(1)过两点A(1,2),B(5,6),且圆心在直线2x-y-5=0上的圆的标准方程;
(2)求与直线x+3y-8=0相切于点P(2,2),且截y轴所得弦长为2的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的图象的相邻两条对称轴间的距离是$\frac{π}{2}$.若将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再把图象上每个点的横坐标缩小为原来的一半,得到g(x),则g(x)的解析式为(  )
A.g(x)=sin(4x+$\frac{π}{6}$)B.g(x)=sin(8x-$\frac{π}{3}$)C.g(x)=sin(x+$\frac{π}{6}$)D.g(x)=sin4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等腰梯形ABCD中,AB∥CD,AD=BC=2,AB=2CD=4,过C,D分别作AB的垂线,垂足分别为E,F,将△BCE,△ADF分别沿CE,DF向上翻折到△B′CE,△A′DF,使得两个三角形所在平面分别与平面ABCD垂直.连接AA′,A′B′,B′B.
(1)求证:A′D∥平面CB′B;
(2)求几何体AA′D-BB′C的体积;
(3)求面AA′D与面BB′C所成角的余弦值.

查看答案和解析>>

同步练习册答案