精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则f(x)的最小值为(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

分析 根据向量数量积的应用,结合三角函数的单调性进行求解即可.

解答 解:∵向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),
∴|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,
$\overrightarrow{a}$•$\overrightarrow{b}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)•(cos$\frac{x}{2}$,-sin$\frac{x}{2}$)
=cos$\frac{3x}{2}$cos$\frac{x}{2}$-sin$\frac{3x}{2}$sin$\frac{x}{2}$=cos($\frac{3x}{2}$+$\frac{x}{2}$)=cos2x,
∵f(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|,
∴f2(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$=1+1+2cos2x=2+2cos2x,
∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],∴2x∈[-$\frac{π}{3}$,$\frac{π}{2}$],
∴当2x=$\frac{π}{2}$时,2+2cos2x取得最小值2+0=2,
即f(x)=$\sqrt{2+2cos2x}$的最小值为$\sqrt{2}$,
故选:C

点评 本题主要考查函数最值的求解,利用向量数量积的应用是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=\sqrt{3}+tsinα\end{array}$(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ-$\frac{π}{3}$).
(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知过点(1,1)的直线l与圆C:x2+y2-4y+2=0相切,则圆C的半径为$\sqrt{2}$,直线l的方程为x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=Asin(ωx+φ)的部分图象如图,则f($\frac{7π}{4}$)=(  )
A.-$\sqrt{3}$B.-1C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设cos(α+β)sinα-sin(α+β)cosα=$\frac{12}{13}$,且β是第四象限角,则tan$\frac{β}{2}$=(  )
A.±$\frac{2}{3}$B.±$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.根据下列条件,求圆方程:
(1)过两点A(1,2),B(5,6),且圆心在直线2x-y-5=0上的圆的标准方程;
(2)求与直线x+3y-8=0相切于点P(2,2),且截y轴所得弦长为2的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面内有n(n∈N*)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(3)=7;f(n)=$\frac{{{n^2}+n+2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=m-|x+1|,m∈R,且f(x-1)≥0的解集为[-2,2].
(Ⅰ)求m的值;
(Ⅱ)若a,b,c∈R+,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=m,求z=a+2b+3c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow a$,$\overrightarrow b$是两个相互垂直的单位向量,而|$\overrightarrow c$|=13,$\overrightarrow c$•$\overrightarrow a$=3,$\overrightarrow c$•$\overrightarrow b$=4,则对于任意实数t1,t2,则|$\overrightarrow c$-t1$\overrightarrow a-{t_2}$$\overrightarrow b$|的最小值是12.

查看答案和解析>>

同步练习册答案