分析 (1)利用极坐标与直角坐标的互化方法,即可得出结论;
(2)联立曲线C1与曲线C2的方程,利用参数的几何意义,即可求|AB|的最大值和最小值.
解答 解:(1)对于曲线C2有$ρ=8cos(θ-\frac{π}{3})$,即${ρ^2}=4ρcosθ+4\sqrt{3}ρsinθ$,
因此曲线C2的直角坐标方程为${x^2}+{y^2}=4x+4\sqrt{3}y$,其表示一个圆.(5分)
(2)联立曲线C1与曲线C2的方程可得:${t^2}-2\sqrt{3}sinα•t-13=0$,
∴t1+t2=2$\sqrt{3}$sinα,t1t2=-13
$|AB|=|{t_1}-{t_2}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{{{(2\sqrt{3}sinα)}^2}-4(-13)}=\sqrt{12{{sin}^2}α+52}$,
因此sinα=0,|AB|的最小值为$2\sqrt{13}$,sinα=±1,最大值为8.(10分)
点评 本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容.本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.
科目:高中数学 来源: 题型:解答题
| 态度 调查人群 | 放开 | 不放开 | 无所谓 |
| 已婚人士 | 2200人 | 200人 | y人 |
| 未婚人士 | 680人 | x人 | z人 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{3}\;,\;\;2)$ | B. | (-3,2) | C. | (1,2) | D. | $(\sqrt{3}\;,\;\;\sqrt{5})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2=r2-$\frac{1}{4}$ | B. | a=r | C. | a2=r2+$\frac{1}{4}$ | D. | a2=r2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com