精英家教网 > 高中数学 > 题目详情
13.已知抛物线C:y2=4x的焦点为F,它的准线与对称轴的交点为H,过点H的直线与抛物线C交于A、B两点,过点A作直线AF与抛物线C交于另一点B1,过点A、B、B1的圆的圆心坐标为(a,b),半径为r,则下列各式成立的是(  )
A.a2=r2-$\frac{1}{4}$B.a=rC.a2=r2+$\frac{1}{4}$D.a2=r2+1

分析 由题意,取A(4,4),直线AB:y=$\frac{4}{5}$(x+1),求出B的坐标,进一步求出B1的坐标,即可得出结论.

解答 解:由题意,取A(4,4),直线AB:y=$\frac{4}{5}$(x+1),
代入y2=4x,可得4x2-17x+4=0,∴可得B($\frac{1}{4}$,1),
直线AF的方程为y-0=$\frac{4}{3}$(x-1)代入y2=4x,可得4x2-17x+4=0,∴可得B1($\frac{1}{4}$,-1),
AB的中点为($\frac{17}{8}$,$\frac{5}{2}$),线段AB的垂直平分线的方程为y-$\frac{5}{2}$=-$\frac{5}{4}$(x-$\frac{17}{8}$),
令y=0,可得x=$\frac{33}{8}$,∴a=$\frac{33}{8}$,
r2=($\frac{33}{8}$-4)2+(0-4)2=$\frac{1025}{64}$,∴r2+1=$\frac{1089}{64}$=a2
故选:D.

点评 本题考查直线与抛物线的位置关系,考查圆的方程,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,在正方体ABCD-A1B1C1D1中,M为BB1的中点,则直线MC与平面ACD1所成角的正弦值为$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线3x2-y2=9的实轴长是(  )
A.2$\sqrt{3}$B.2$\sqrt{2}$C.4$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-ax+1(a∈R).
(1)当a=1时,求函数f(x)的极大值;
(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;
(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:$\frac{{x}_{1}-{x}_{2}}{h({x}_{1})-h({x}_{2})}$>$\sqrt{{x}_{1}{x}_{2}}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=\sqrt{3}+tsinα\end{array}$(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ-$\frac{π}{3}$).
(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l1:y=ax-1,直线l2:y=x-3;若直线l1的倾斜角为$\frac{π}{4}$,则a=1,若l1⊥l2,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin(-480°)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.根据下列条件,求圆方程:
(1)过两点A(1,2),B(5,6),且圆心在直线2x-y-5=0上的圆的标准方程;
(2)求与直线x+3y-8=0相切于点P(2,2),且截y轴所得弦长为2的圆的标准方程.

查看答案和解析>>

同步练习册答案