精英家教网 > 高中数学 > 题目详情
9.已知过点(1,1)的直线l与圆C:x2+y2-4y+2=0相切,则圆C的半径为$\sqrt{2}$,直线l的方程为x-y=0.

分析 把圆C的方程化为标准方程,写出圆心与半径,验证点P(1,1)在圆C上,求出直线CP的斜率,从而求出直线l的斜率和方程.

解答 解:圆C:x2+y2-4y+2=0,
化为标准方程是:x2+(y-2)2=2,
所以圆心坐标为C(0,2),半径r=$\sqrt{2}$;
又点P(1,1)满足方程x2+y2-4y+2=0,
所以点P在圆C上,
又直线CP的斜率为kCP=$\frac{1-2}{1-0}$=-1,
所以直线l的斜率为k=1,
直线l方程为y-1=x-1,即x-y=0.
故答案为:$\sqrt{2}$,x-y=0.

点评 本题考查了直线与圆相切的应用问题,解题时要考虑点P是否在圆上,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知f(x)的定义域为R,f(1)=$\frac{1}{4}$,且满足4f(x)f(y)=f(x+y)+f(x-y),则f(2016)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有下列说法:
①在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{CA}$<0,则△ABC是钝角三角形;
②在△ABC中$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,若|$\overrightarrow{a}$|=|$\overrightarrow{b}$-$\overrightarrow{c}$|,则△ABC是直角三角形;
③在△ABC中,若tan $\frac{A+B}{2}$=sin C,则sin2A+sin2B=1;
④在△ABC中,E,F分别是AC,AB的中点,且3AB=2AC,若$\frac{BE}{CF}$<t恒成立,则t的最小值为$\frac{7}{8}$.
其中正确说法的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知半径为2的扇形面积为$\frac{3}{8}$π,则扇形的圆心角为(  )
A.$\frac{3}{16}$πB.$\frac{3}{8}$πC.$\frac{3}{4}$πD.$\frac{3}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$,$\overrightarrow b$均为单位向量,它们的夹角为60°,则|2$\overrightarrow a$-3$\overrightarrow b}$|等于(  )
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)030-30
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向右平行移动 $\frac{π}{3}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则f(x)的最小值为(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α的终边经过点P(3a,4a),其中a≠0,则sinα-cosα=(  )
A.$\frac{1}{5}$B.$\frac{7}{5}$C.±$\frac{1}{5}$D.±$\frac{7}{5}$

查看答案和解析>>

同步练习册答案