精英家教网 > 高中数学 > 题目详情
4.已知半径为2的扇形面积为$\frac{3}{8}$π,则扇形的圆心角为(  )
A.$\frac{3}{16}$πB.$\frac{3}{8}$πC.$\frac{3}{4}$πD.$\frac{3}{2}$π

分析 利用已知及扇形的面积公式即可计算得解.

解答 解:设扇形的圆心角大小为α(rad),半径为r,
则由扇形的面积为S=$\frac{1}{2}$r2α,可得:$\frac{3}{8}$π=$\frac{1}{2}×$22×α,
解得:扇形的圆心角α=$\frac{3π}{16}$.
故选:A.

点评 本题主要考查了扇形的面积公式的应用,解题的关键是能够灵活的运用扇形的面积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式为an=cos$\frac{nπ}{2}$,{bn}是等差数列,cn=an+bn,数列{cn}的前n项和为Sn,且c10=$\frac{1}{2}$,S8=1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求数列{c${\;}_{{4}^{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-|ax-2|,x∈[-1,2],
(Ⅰ)当a=6时,求函数f(x)的值域;
(Ⅱ)设0<a≤4,求函数f(x)最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{cos2x}$+$\sqrt{3-2\sqrt{3}tanx-3{{tan}^2}x}$的定义域为$[kπ-\frac{π}{4},kπ+\frac{π}{6}],k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(文科做)已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边的中点,则$\overrightarrow{CP}$•($\overrightarrow{BA}$-$\overrightarrow{BC}$)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知过点(1,1)的直线l与圆C:x2+y2-4y+2=0相切,则圆C的半径为$\sqrt{2}$,直线l的方程为x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正项数列{an}的前n项和为Sn,且2Sn=an2+an(n∈N*),设cn=(-1)n$\frac{{2{a_n}+1}}{{2{S_n}}}$,则数列{cn}的前2017项的和为-$\frac{2019}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设cos(α+β)sinα-sin(α+β)cosα=$\frac{12}{13}$,且β是第四象限角,则tan$\frac{β}{2}$=(  )
A.±$\frac{2}{3}$B.±$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线y=ax+b通过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案