精英家教网 > 高中数学 > 题目详情
19.(文科做)已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边的中点,则$\overrightarrow{CP}$•($\overrightarrow{BA}$-$\overrightarrow{BC}$)=$\frac{9}{2}$.

分析 先将$\overrightarrow{CP}$•($\overrightarrow{BA}$-$\overrightarrow{BC}$)转化为$\overrightarrow{CP}•\overrightarrow{CA}$,再利用三角形的各边长、余弦定理求出$\overrightarrow{CP}•\overrightarrow{CA}$的夹角的余弦值,继而根据平面向量数量积的定义计算得出答案.

解答 解:∵△ABC的三边长AC=3,BC=4,AB=5,
∴△ABC是以AB边为斜边的直角三角形,
∵P为AB边的中点,
∴CP=$\frac{1}{2}$AB=AP=$\frac{5}{2}$,
∵$\overrightarrow{CP}$•($\overrightarrow{BA}$-$\overrightarrow{BC}$)=$\overrightarrow{CP}•\overrightarrow{CA}$,
∴cos∠PCA=$\frac{{PC}^{2}+A{C}^{2}-A{P}^{2}}{2•PC•AC}$=$\frac{\frac{25}{4}+9-\frac{25}{4}}{2×3×\frac{5}{2}}$=$\frac{3}{5}$,
∴$\overrightarrow{CP}$•($\overrightarrow{BA}$-$\overrightarrow{BC}$)=$\overrightarrow{CP}•\overrightarrow{CA}$=$|\overrightarrow{CP|}•|\overrightarrow{CA}|•cos∠PCA$=$\frac{5}{2}×3×\frac{3}{5}$=$\frac{9}{2}$
故答案为:$\frac{9}{2}$.

点评 本题考查了向量的运算,主要是平面向量数量积的运算,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.过抛物线y2=2px(p>0)的焦点,斜率为$\frac{4}{3}$的直线被抛物线截得的线段长为25,则该抛物线的准线方程为(  )
A.x=-8B.x=-4C.x=-2D.x=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角C-A1B1-C1的大小;
(Ⅲ)若点D是线段BC的中点,请问在线段AB1上是否存在点E,使得DE∥面AA1C1C?若存在,请说明点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知cos2$\frac{A}{2}$=$\frac{b+c}{2b}$,则角B=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(-1,0).
(1)求证:直线l恒过定点,并求出定点坐标;
(2)求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知半径为2的扇形面积为$\frac{3}{8}$π,则扇形的圆心角为(  )
A.$\frac{3}{16}$πB.$\frac{3}{8}$πC.$\frac{3}{4}$πD.$\frac{3}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题:
①没有公共点的两条直线是异面直线;  
②分别和两条异面直线都相交的两直线异面;
③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行;
④三条平行线最多可确定三个平面.
其中正确答案的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sinx,g(x)=$\sqrt{3}$tanx,x∈(0,$\frac{3π}{2}$).
(1)求函数y=f(x)与y=g(x)的图象的交点;
(2)在同一坐标系中,画出f(x),g(x)的草图,根据图象
①写出满足f(x)>g(x)的实数x的取值范围;
②写出这两个函数具有相同的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x+2y-1=0.
(1)求直线l的方程;
(2)若一束光线自点A(2,1)射向直线l,反射光线恰好过原点,求反射光线所在直线方程.

查看答案和解析>>

同步练习册答案