分析 利用an=Sn-Sn-1判断{an}为等差数列,得出{an}的通项公式,从而得出cn的通项公式,使用列项法求和.
解答 解:当n=1时,2a1=a12+a1,∴a1=1或a1=0(舍).
当n≥2时,2an=2Sn-2Sn-1=an2+an-an-12-an-1,
∴an+an-1=a${\;}_{{n}^{\;}}$2-an-12=(an+an-1)(an-an-1).
∵an+an-1≠0,∴an-an-1=1,
∴{an}是以1为首项,以1为公差的等差数列.
∴an=n,2Sn=n2+n.
∴cn=(-1)n$•\frac{2n+1}{{n}^{2}+n}$=(-1)n($\frac{1}{n}+\frac{1}{n+1}$).
设cn的前n项和为Tn,
则T2017=-1-$\frac{1}{2}$+$\frac{1}{2}+\frac{1}{3}$-$\frac{1}{3}$$-\frac{1}{4}$+…-$\frac{1}{2017}$-$\frac{1}{2018}$=-1-$\frac{1}{2018}$=-$\frac{2019}{2018}$.
故答案为:$-\frac{2019}{2018}$.
点评 本题考查了等差关系的判定,等差数列的通项公式及裂项求和,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{16}$π | B. | $\frac{3}{8}$π | C. | $\frac{3}{4}$π | D. | $\frac{3}{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | ||
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+e | B. | e-1 | C. | 1-e | D. | e |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com