精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx+3,g(x)=x2+2x+m,设函数G(x)=f(x)-g(x)-1.
(1)求证:函数f(x)-g(x)必有零点
(2)若|G(x)|在[-1,0]上是减函数,求实数m的取值范围;
(3)是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,说明理由.
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:(1)由函数f(x)=mx+3,g(x)=x2+2x+m,我们易给出函数f(x)-g(x)的零点,判断对应方程的△与0的关系,易得结论.
(2)由函数f(x)=mx+3,g(x)=x2+2x+m,我们易给出函数G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是减函数,根据对折变换函数图象的特征,我们分△≤0和△>0两种情况进行讨论,可得到满足条件的m的取值范围;
(3)若a≤G(x)≤b的解集恰好是[a,b],则
G(a)=a
G(b)=b
a≤
4(2-m)+(m-2)2
4
≤b
,将a,b代入消去m,可以求出a,b的值.
解答: 证明:(1)f(x)-g(x)=-x2+(m-2)x+3-m.
令f(x)-g(x)=0.
则△=(m-2)2-4(m-3)=m2-8m+16=(m-4)2≥0恒成立.
所以方程f(x)-g(x)=0有解.
所以函数f(x)-g(x)必有零点.
解:(2)G(x)=f(x)-g(x)-1=-x2+(m-2)x+2-m.
令G(x)=0,△=(m-2)2-4(m-2)=(m-2)(m-6).
当△≤0,即2≤m≤6时,G(x)=-x2+(m-2)x+2-m≤0恒成立,
所以|G(x)|=x2-(m-2)x+m-2.
因为|G(x)|在[-1,0]上是减函数,所以
m-2
2
≥0.解得m≥2.
所以2≤m≤6.
当△>0,即m<2或m>6时,|G(x)|=|x2-(m-2)x+m-2|.
因为|G(x)|在[-1,0]上是减函数,
所以方程x2-(m-2)x+m-2=0的两根均大于零或一根大于零另一根小于零
且x=
m-2
2
≤-1.
所以
m-2>0
m-2
2
>0
m-2<0
m-2
2
≤-1
,解得m>2或m≤0.
所以m≤0或m>6.
综上可得,实数m的取值范围为(-∞,0]∪[2,+∞).
(3)因为a≤G(x)≤b的解集恰好是[a,b],
所以
G(a)=a
G(b)=b

-a2+(m-2)a+2-m=a
-b2+(m-2)b+2-m=b
消去m,得ab-2a-b=0,显然b≠2.
所以a=
b
b-2
=1+
2
b-2
.     
因为a,b均为整数,所以b-2=±1或b-2=±2.
解得
a=3
b=3
a=-1
b=1
a=2
b=4
a=0
b=0

因为a<b,且a≤
4(2-m)+(m-2)2
4
≤b
所以
a=-1
b=1
a=2
b=4
点评:本题考查的知识点是函数的零点,函数图象的对折变换,函数的单调性,函数的值域,(1)中解答的关键是“三个二次”之间的辩证关系,即函数有零点,则对应的方程有根;(2)的切入点是函数图象对折变换后的函数图象特征;(3)中消参思想是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对任意的x∈N*都有f(x)∈N*,且f(x)满足:f(n+1)>f(n),f(f(n))=3n,则(1)f(1)=
 
;(2)f(10)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-3x
(Ⅰ)已知a=6,且g(x)=f(x)-f′(x)+3x2,求g(x)的单调区间;
(Ⅱ)若函数f(x)在[1+
2
,+∞)是增函数,导函数f′(x)在(-∞,1]上是减函数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,从圆O外一点A引圆的切线AD和割线ABC,已知AD=4
3
,AC=12,圆O的半径为5,则圆心O到AC的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

福布斯2009年中国富豪榜发布后,有人认为中国富豪受益于活跃的股票市场,得益于强劲的资本市场.股票有风险应考虑中长期投资,若某股票上市时间能持续15年,预测上市初期和后期会因供求及市场前景分析使价格呈连续上涨态势,而中期有将出现供大于求使价格连续下跌.现有三种价格随发行年数x的模拟函数:(A)f(x)=p-qx;(B)f(x)=logqx+p;(C)f(x)=(x-1)(x-q)2+p(以上三式中p,q均为常数,且q>2).
(1)为准确研究其价格走势,应选哪种价格模拟函数?为什么?
(2)若f(1)=4,f(3)=6 ①求出所选函数f(x)的解析式;②一般散户为保证个人的收益,通常考虑打算在价格下跌期间出股票,请问他们会在哪几个年份出售?

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1的各顶点都在以O为球心的球面上,且AB=AD=1,AA1=
2
,则A、D1两点的球面距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂因排污比较严重,决定着手整治,一个月时污染度为60,整治后前四个月的污染度如下表;
月数1234
污染度6031130
污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f(x)=20|x-4|(x≥1),g(x)=
20
3
(x-4)2
(x≥1),h(x)=30|log2x-2|(x≥1),其中x表示月数,f(x)、g(x)、h(x)分别表示污染度.
(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60?

查看答案和解析>>

科目:高中数学 来源: 题型:

招商引资是指地方政府吸收投资的活动,招商引资一度成为各级地方政府的主要工作,某外商计划2013年在烟台4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有(  )
A、16种B、36种
C、42种D、60种

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足(z+1)i=(1+2i)z,则z等于(  )
A、
1
2
-
1
2
i
B、
1
2
+
1
2
i
C、
1
5
-
1
5
i
D、
1
5
+
1
5
i

查看答案和解析>>

同步练习册答案