【题目】已知函数
,要使函数
恰有一个零点,则实数
的取值范围是( ).
A.
B.![]()
C.
D.![]()
【答案】B
【解析】
先利用导数求出函数
的单调性和极值,画出函数
的大致图象,令
,由函数
的图象可知方程
,只能有一个正根,且若有负根的话,负根必须小于
,分类讨论,即可求解.
由题意,函数
,
,则
,
当
时,
,函数
单调递减;
当
时,
,函数
单调递增,
所以函数
的最小值为
,
函数
的大致图象,如图所示:
函数
恰有一个零点,
等价于方程
只有一个根,
令
,由函数
的图象可知方程
,只能有一个正根,且若有负根的话,负根必须小于
,
①当
时,方程为
,∴
,符合题意,
②当
时,
若
,即
时,方程为
,解得
,符合题意,
若
,即
时:设
,
(ⅰ)当
时,二次函数
开口向下,又
,
要使方程
只有一个正根,且负根小于
,则
,
即
,可得
,
(ⅱ)当
时,二次函数
开口向上,又因为
,
则方程
有两个不等的正根,不符合题意,
综上所求,实数
的取值范围是:
或
,
故选:B.
![]()
科目:高中数学 来源: 题型:
【题目】设a是实数,关于z的方程(z2-2z+5)(z2+2az+1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①
,②
,③
这三个条件中任选一个,补充在下面问题中,若问题中的正整数k存在,求k的值;若k不存在,请说明理由.
设
为等差数列
的前n项和,
是等比数列,______,
,
,
.是否存在k,使得
且
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,圆心为坐标原点的单位圆O在C的内部,且与C有且仅有两个公共点,直线
与C只有一个公共点.
(1)求C的标准方程;
(2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线l与C交于A,B两点,且弦AB的中垂线交x轴于点P,试求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区
的
天日落和夜晚天气,得到如下
列联表:
夜晚天气日落云里走 | 下雨 | 未下雨 |
出现 |
|
|
未出现 |
|
|
参考公式:
.
临界值表:
|
|
|
|
|
|
|
|
|
|
(1)根据上面的列联表判断能否有
的把握认为“当晚下雨”与“‘日落云里走’出现”有关?
(2)小波同学为进一步认识其规律,对相关数据进行分析,现从上述调查的“夜晚未下雨”天气中按分层抽样法抽取
天,再从这
天中随机抽出
天进行数据分析,求抽到的这
天中仅有
天出现“日落云里走”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
.
(Ⅰ)求曲线
被直线
截得的弦长;
(Ⅱ)与直线
垂直的直线
与曲线
相切于点
,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是我国古代计算圆周率
的一种方法.在公元
年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求
.当时刘微就是利用这种方法,把
的近似值计算到
和
之间,这是当时世界上对圆周率
的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率
,则
的近似值是( )(精确到
)(参考数据
)
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的左右焦点分别为F1,F2,点
在椭圆C上,满足
.
(1)求椭圆C的标准方程;
(2)直线l1过点P,且与椭圆只有一个公共点,直线l2与l1的倾斜角互补,且与椭圆交于异于点P的两点M,N,与直线x=1交于点K(K介于M,N两点之间).
①问:直线PM与PN的斜率之和能否为定值,若能,求出定值并写出详细计算过程;若不能,请说明理由;
②求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形
中,AB∥CD,
,且
.现以
为一边向梯形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,如图2.
![]()
![]()
(Ⅰ)求证:BC⊥平面DBE;
(Ⅱ)求点D到平面BEC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com