分析 把y1<y2利用指数函数的单调性转化为一元二次不等式求得答案.
解答 解:y1=($\frac{2}{3}$)${\;}^{3{x}^{2}+2}$,y2=($\frac{2}{3}$)${\;}^{{x}^{2}+4}$,
由y1<y2,得($\frac{2}{3}$)${\;}^{3{x}^{2}+2}$<($\frac{2}{3}$)${\;}^{{x}^{2}+4}$,
∴3x2+2>x2+4,即2x2>2,x2>1,
解得x<-1或x>1.
∴使y1<y2的x的取值范围为(-∞,-1)∪(1,+∞)..
点评 本题考查指数不等式的解法,考查了指数函数的单调性,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com